Actualizar app.py
Browse files
app.py
CHANGED
|
@@ -2,118 +2,11 @@ import gradio as gr
|
|
| 2 |
import requests
|
| 3 |
import json
|
| 4 |
import os
|
| 5 |
-
import random
|
| 6 |
import base64
|
| 7 |
import io
|
| 8 |
from PIL import Image
|
| 9 |
-
from typing import List, Optional
|
| 10 |
-
|
| 11 |
-
# ==============================================================
|
| 12 |
-
# CLASE PRINCIPAL: GENERADOR DE PROMPTS HIPERREALISTAS
|
| 13 |
-
# ==============================================================
|
| 14 |
-
|
| 15 |
-
class HyperrealisticPromptGenerator:
|
| 16 |
-
def __init__(self):
|
| 17 |
-
self.ROLES = [
|
| 18 |
-
"nurse", "nun", "maid", "flight attendant", "secretary", "teacher", "schoolgirl", "lawyer",
|
| 19 |
-
"doctor", "boudoir model", "fitness model", "elegant judge", "seductive librarian",
|
| 20 |
-
"business executive", "policewoman", "female military officer", "WWII-era secretary",
|
| 21 |
-
"1960s flight attendant", "seductive maid", "mysterious nurse", "captivating schoolgirl"
|
| 22 |
-
]
|
| 23 |
-
self.AGES = [
|
| 24 |
-
"early 20s youthful vibrance",
|
| 25 |
-
"mid 20s graceful confidence",
|
| 26 |
-
"late 20s elegant maturity"
|
| 27 |
-
]
|
| 28 |
-
self.HAIR_COLORS = [
|
| 29 |
-
"deep sapphire blue", "silver platinum", "vibrant ruby red", "glossy jet black",
|
| 30 |
-
"luxurious chestnut brown", "emerald green", "vivid amethyst purple",
|
| 31 |
-
"chocolate brown", "honey blonde", "burgundy red"
|
| 32 |
-
]
|
| 33 |
-
self.EYE_COLORS = [
|
| 34 |
-
"intense brown", "bright sapphire blue", "emerald green", "golden amber",
|
| 35 |
-
"fascinating hazel", "deep violet", "piercing emerald", "mysterious gray",
|
| 36 |
-
"vibrant violet", "intense amber"
|
| 37 |
-
]
|
| 38 |
-
self.HAIR_STYLES = [
|
| 39 |
-
"long flowing chestnut hair styled in soft waves",
|
| 40 |
-
"sleek straight long black hair",
|
| 41 |
-
"luxurious long blonde curls",
|
| 42 |
-
"elegant updo with loose cascading strands",
|
| 43 |
-
"voluminous curls with side part",
|
| 44 |
-
"thick braid over the shoulder",
|
| 45 |
-
"loose and silky layers",
|
| 46 |
-
"messy chic bun"
|
| 47 |
-
]
|
| 48 |
-
self.POSES = [
|
| 49 |
-
"standing with one leg slightly forward, natural elegance",
|
| 50 |
-
"seated on a chair edge, legs crossed, professional expression",
|
| 51 |
-
"leaning against a desk, confident look",
|
| 52 |
-
"walking with subtle grace, light movement",
|
| 53 |
-
"adjusting hair gently, natural body language"
|
| 54 |
-
]
|
| 55 |
-
self.SETTINGS = [
|
| 56 |
-
"modern office with elegant decor and warm ambient light",
|
| 57 |
-
"luxury hotel suite with velvet furnishings and city view",
|
| 58 |
-
"classic library with wooden shelves and soft reading lamps",
|
| 59 |
-
"outdoor balcony at sunset with urban skyline",
|
| 60 |
-
"high-end photo studio with professional soft lighting"
|
| 61 |
-
]
|
| 62 |
-
self.ATMOSPHERES = [
|
| 63 |
-
"soft professional lighting with smooth skin shadows, perfect color balance",
|
| 64 |
-
"warm golden hour sunlight creating rich highlights and depth",
|
| 65 |
-
"moody cinematic lighting with subtle shadow play",
|
| 66 |
-
"gentle romantic candlelight with warm glows",
|
| 67 |
-
"sharp studio flash lighting with balanced illumination"
|
| 68 |
-
]
|
| 69 |
-
self.TECHNICAL_DETAILS = (
|
| 70 |
-
"Captured in ultra HD 16K (15360×8640) vertical 9:16 full body format. "
|
| 71 |
-
"Canon EOS R5 Cine RAW camera and Canon RF 85mm f/1.2L USM lens at f/1.2 aperture for creamy bokeh. "
|
| 72 |
-
"ARRI SkyPanel S360-C soft lighting, Path Tracing, PBR, SSS for lifelike skin, and Ray Tracing. "
|
| 73 |
-
"Photogrammetry-based textures, displacement maps for skin pores, delicate fabric weave. "
|
| 74 |
-
"Natural hair strand flow, low-angle (knee to head) composition."
|
| 75 |
-
)
|
| 76 |
-
self.CONDITION_FIXED = (
|
| 77 |
-
"Wearing elegant professional attire matching the role, natural posture, confident expression. "
|
| 78 |
-
"Full body portrait, cinematic tone, vertical 9:16 framing."
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
def _choose_random(self, options: List[str]) -> str:
|
| 82 |
-
return random.choice(options)
|
| 83 |
-
|
| 84 |
-
def generate_single_prompt(self, role: Optional[str] = None) -> str:
|
| 85 |
-
selected_role = role if role else self._choose_random(self.ROLES)
|
| 86 |
-
age = self._choose_random(self.AGES)
|
| 87 |
-
hair_color = self._choose_random(self.HAIR_COLORS)
|
| 88 |
-
eye_color = self._choose_random(self.EYE_COLORS)
|
| 89 |
-
hair_style = self._choose_random(self.HAIR_STYLES)
|
| 90 |
-
pose = self._choose_random(self.POSES)
|
| 91 |
-
setting = self._choose_random(self.SETTINGS)
|
| 92 |
-
atmosphere = self._choose_random(self.ATMOSPHERES)
|
| 93 |
-
|
| 94 |
-
prompt = f"""
|
| 95 |
-
Highly detailed hyperrealistic full-body portrait of a {selected_role}, {age}, with {hair_style}, {hair_color} hair, and {eye_color} eyes.
|
| 96 |
-
She is {pose}, in a {setting}. {atmosphere}.
|
| 97 |
-
{self.CONDITION_FIXED}
|
| 98 |
-
{self.TECHNICAL_DETAILS}
|
| 99 |
-
"""
|
| 100 |
-
return prompt.strip()
|
| 101 |
-
|
| 102 |
-
def generate_prompt_automatic(self):
|
| 103 |
-
return self.generate_single_prompt(), ""
|
| 104 |
-
|
| 105 |
-
# ==============================================================
|
| 106 |
-
# SAMBANOVA API CONFIG
|
| 107 |
-
# ==============================================================
|
| 108 |
-
|
| 109 |
-
gen = HyperrealisticPromptGenerator()
|
| 110 |
-
|
| 111 |
-
# Asegúrate de configurar SAMBANOVA_API_KEY en tu entorno
|
| 112 |
-
API_KEY = os.getenv("SAMBANOVA_API_KEY")
|
| 113 |
-
API_URL = "https://api.sambanova.ai/v1/chat/completions"
|
| 114 |
-
headers = {"Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json"}
|
| 115 |
-
|
| 116 |
|
|
|
|
| 117 |
def process_image(image):
|
| 118 |
if image is None:
|
| 119 |
return None
|
|
@@ -121,12 +14,13 @@ def process_image(image):
|
|
| 121 |
image.save(buffered, format="PNG")
|
| 122 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 123 |
|
| 124 |
-
|
| 125 |
def analizar_imagen_y_generar_prompt(image_base64):
|
|
|
|
|
|
|
|
|
|
| 126 |
if not API_KEY:
|
| 127 |
-
return "
|
| 128 |
-
|
| 129 |
-
# Formato de contenido para el análisis de imagen (puede variar)
|
| 130 |
messages = [
|
| 131 |
{"role": "system", "content": "Describe images in detailed English."},
|
| 132 |
{
|
|
@@ -137,178 +31,43 @@ def analizar_imagen_y_generar_prompt(image_base64):
|
|
| 137 |
]
|
| 138 |
}
|
| 139 |
]
|
| 140 |
-
|
| 141 |
json_data = {"model": "Llama-4-Maverick-17B-128E-Instruct", "messages": messages, "stream": False}
|
| 142 |
try:
|
| 143 |
response = requests.post(API_URL, headers=headers, json=json_data)
|
| 144 |
response.raise_for_status()
|
| 145 |
text_resp = response.json()["choices"][0]["message"]["content"]
|
| 146 |
-
return
|
| 147 |
-
except Exception as e:
|
| 148 |
-
return f"```\nError analizando imagen: {str(e)}\n```"
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
# ==============================================================
|
| 152 |
-
# FUNCIÓN PRINCIPAL DE CHAT Y PROMPT (CORREGIDA)
|
| 153 |
-
# ==============================================================
|
| 154 |
-
|
| 155 |
-
def chat_sambanova(user_message, image_input, auto_mode, chat_history):
|
| 156 |
-
updated_history = chat_history[:] if chat_history else []
|
| 157 |
-
image_base64 = process_image(image_input) if image_input else None
|
| 158 |
-
|
| 159 |
-
# 1. Yield inicial para mostrar "Procesando..." y borrar la entrada del usuario
|
| 160 |
-
yield "", updated_history, "", "Procesando..."
|
| 161 |
-
|
| 162 |
-
if not API_KEY:
|
| 163 |
-
error_msg = "Error: SAMBANOVA_API_KEY no configurada."
|
| 164 |
-
updated_history.append((user_message, error_msg))
|
| 165 |
-
# 2. Yield de error
|
| 166 |
-
yield user_message, updated_history, error_msg, ""
|
| 167 |
-
return
|
| 168 |
-
|
| 169 |
-
if auto_mode and image_base64:
|
| 170 |
-
prompt = analizar_imagen_y_generar_prompt(image_base64)
|
| 171 |
-
updated_history.append((user_message or "Análisis automático (Imagen)", f"IA - Prompt generado:\n{prompt}"))
|
| 172 |
-
# 3. Yield de finalización de análisis
|
| 173 |
-
yield "", updated_history, "", ""
|
| 174 |
-
return
|
| 175 |
-
|
| 176 |
-
# Preparar el historial de chat para la API
|
| 177 |
-
messages = [{"role": "system", "content": "Eres un asistente útil"}]
|
| 178 |
-
for user_msg, ai_msg in updated_history:
|
| 179 |
-
# Los mensajes del historial deben ser solo de texto para el rol 'user'
|
| 180 |
-
# Esto previene errores de formato en mensajes pasados.
|
| 181 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": user_msg}]})
|
| 182 |
-
messages.append({"role": "assistant", "content": ai_msg})
|
| 183 |
-
|
| 184 |
-
# Preparar el mensaje actual (puede ser texto o multimodal)
|
| 185 |
-
user_content = [{"type": "text", "text": user_message}]
|
| 186 |
-
if image_base64:
|
| 187 |
-
user_content.append({"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}})
|
| 188 |
-
messages.append({"role": "user", "content": user_content})
|
| 189 |
-
|
| 190 |
-
json_data = {"model": "Llama-4-Maverick-17B-128E-Instruct", "messages": messages, "stream": True}
|
| 191 |
-
|
| 192 |
-
try:
|
| 193 |
-
response = requests.post(API_URL, headers=headers, json=json_data, stream=True)
|
| 194 |
-
response.raise_for_status()
|
| 195 |
-
collected_text = ""
|
| 196 |
-
updated_history.append((user_message, ""))
|
| 197 |
-
|
| 198 |
-
for line in response.iter_lines(decode_unicode=True):
|
| 199 |
-
if line.startswith("data: "):
|
| 200 |
-
json_str = line[len("data: "):]
|
| 201 |
-
if json_str == "[DONE]":
|
| 202 |
-
break
|
| 203 |
-
try:
|
| 204 |
-
data = json.loads(json_str)
|
| 205 |
-
delta = data.get("choices", [{}])[0].get("delta", {})
|
| 206 |
-
text_fragment = delta.get("content", "")
|
| 207 |
-
collected_text += text_fragment
|
| 208 |
-
updated_history[-1] = (user_message, collected_text)
|
| 209 |
-
# 4. Yield de streaming
|
| 210 |
-
yield "", updated_history, "", "Procesando..."
|
| 211 |
-
except json.JSONDecodeError:
|
| 212 |
-
continue
|
| 213 |
-
# 5. Yield final
|
| 214 |
-
yield "", updated_history, "", ""
|
| 215 |
except Exception as e:
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
#
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
.
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
gr.Markdown("# ⚡ BATUTO / Prompt Studio — Hyperrealistic Generator")
|
| 245 |
-
|
| 246 |
-
chat_history = gr.State([])
|
| 247 |
-
error_display = gr.Textbox(label="System messages", value="", visible=True, interactive=False)
|
| 248 |
-
|
| 249 |
-
chatbot = gr.Chatbot(label="💬 BATUTO Assistant (SambaNova - Llama-4 Maverick)", type='messages')
|
| 250 |
-
# Cambiado a Textbox para mejor funcionalidad de copia.
|
| 251 |
-
prompt_output = gr.Textbox(label="🎨 Prompt generado", elem_classes=["prompt-output"], lines=5, max_lines=10)
|
| 252 |
-
|
| 253 |
-
with gr.Row():
|
| 254 |
-
# La salida msg se usa para limpiar la caja de texto después del envío
|
| 255 |
-
msg = gr.Textbox(label="Tu mensaje", scale=4, placeholder="Escribe tu mensaje o usa el modo automático...")
|
| 256 |
-
img_input = gr.Image(label="Sube una imagen (opcional)", type="pil", scale=2)
|
| 257 |
-
|
| 258 |
-
with gr.Row():
|
| 259 |
-
auto_mode = gr.Checkbox(label="Modo automático (Generar prompt desde imagen)", value=False)
|
| 260 |
-
btn_send = gr.Button("Enviar mensaje", variant="primary")
|
| 261 |
-
btn_gen_prompt = gr.Button("🎲 Generar prompt automático", variant="secondary")
|
| 262 |
-
copy_button = gr.Button("📋 Copiar Prompt")
|
| 263 |
-
|
| 264 |
-
# Componente para mostrar el estado de carga (Procesando...)
|
| 265 |
-
loading_state = gr.Textbox(value="", label="Estado", interactive=False)
|
| 266 |
-
|
| 267 |
-
# Asignación de outputs corregida para coincidir con la función chat_sambanova
|
| 268 |
-
btn_send.click(
|
| 269 |
-
fn=chat_sambanova,
|
| 270 |
-
inputs=[msg, img_input, auto_mode, chat_history],
|
| 271 |
-
outputs=[msg, chatbot, error_display, loading_state]
|
| 272 |
-
)
|
| 273 |
-
|
| 274 |
-
msg.submit(
|
| 275 |
-
fn=chat_sambanova,
|
| 276 |
-
inputs=[msg, img_input, auto_mode, chat_history],
|
| 277 |
-
outputs=[msg, chatbot, error_display, loading_state]
|
| 278 |
-
)
|
| 279 |
-
|
| 280 |
-
# La salida del prompt va al Textbox y la segunda salida es para limpiar errores
|
| 281 |
-
btn_gen_prompt.click(
|
| 282 |
-
fn=generar_prompt_interno,
|
| 283 |
-
inputs=[],
|
| 284 |
-
outputs=[prompt_output, error_display]
|
| 285 |
-
)
|
| 286 |
-
|
| 287 |
-
# CORRECCIÓN DE ERROR: Cambiado _js a js
|
| 288 |
-
copy_button.click(
|
| 289 |
-
None,
|
| 290 |
-
[],
|
| 291 |
-
[],
|
| 292 |
-
js="""() => {
|
| 293 |
-
// Usa el ID o selector de clase del Textbox
|
| 294 |
-
const promptBox = document.querySelector('.prompt-output textarea');
|
| 295 |
-
const promptText = promptBox ? promptBox.value : '';
|
| 296 |
-
|
| 297 |
-
if (promptText) {
|
| 298 |
-
navigator.clipboard.writeText(promptText).then(() => {
|
| 299 |
-
alert('✅ Prompt copiado al portapapeles');
|
| 300 |
-
}).catch(err => {
|
| 301 |
-
alert('❌ Error al copiar: ' + err);
|
| 302 |
-
});
|
| 303 |
-
} else {
|
| 304 |
-
alert('❌ No se encontró el prompt para copiar. Genera uno primero.');
|
| 305 |
-
}
|
| 306 |
-
}"""
|
| 307 |
)
|
| 308 |
|
| 309 |
if __name__ == "__main__":
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
except Exception as e:
|
| 313 |
-
print(f"Error al iniciar Gradio: {str(e)}")
|
| 314 |
-
|
|
|
|
| 2 |
import requests
|
| 3 |
import json
|
| 4 |
import os
|
|
|
|
| 5 |
import base64
|
| 6 |
import io
|
| 7 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# Procesar imagen a base64
|
| 10 |
def process_image(image):
|
| 11 |
if image is None:
|
| 12 |
return None
|
|
|
|
| 14 |
image.save(buffered, format="PNG")
|
| 15 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 16 |
|
| 17 |
+
# Función para llamar a la API Sambanova para análisis de imagen + texto
|
| 18 |
def analizar_imagen_y_generar_prompt(image_base64):
|
| 19 |
+
API_KEY = os.getenv("SAMBANOVA_API_KEY")
|
| 20 |
+
API_URL = "https://api.sambanova.ai/v1/chat/completions"
|
| 21 |
+
headers = {"Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json"}
|
| 22 |
if not API_KEY:
|
| 23 |
+
return "⚠️ SAMBANOVA_API_KEY no configurada."
|
|
|
|
|
|
|
| 24 |
messages = [
|
| 25 |
{"role": "system", "content": "Describe images in detailed English."},
|
| 26 |
{
|
|
|
|
| 31 |
]
|
| 32 |
}
|
| 33 |
]
|
|
|
|
| 34 |
json_data = {"model": "Llama-4-Maverick-17B-128E-Instruct", "messages": messages, "stream": False}
|
| 35 |
try:
|
| 36 |
response = requests.post(API_URL, headers=headers, json=json_data)
|
| 37 |
response.raise_for_status()
|
| 38 |
text_resp = response.json()["choices"][0]["message"]["content"]
|
| 39 |
+
return text_resp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
except Exception as e:
|
| 41 |
+
return f"Error al analizar imagen: {str(e)}"
|
| 42 |
+
|
| 43 |
+
# Función principal del chat dinámico
|
| 44 |
+
def chat_mode(user_message, image_input, chat_history, auto_mode):
|
| 45 |
+
chat_history = chat_history or []
|
| 46 |
+
image_b64 = process_image(image_input) if image_input else None
|
| 47 |
+
chat_history.append(("Usuario", user_message))
|
| 48 |
+
if auto_mode and image_b64:
|
| 49 |
+
respuesta = analizar_imagen_y_generar_prompt(image_b64)
|
| 50 |
+
else:
|
| 51 |
+
respuesta = "Mensaje recibido: " + user_message
|
| 52 |
+
chat_history.append(("IA", respuesta))
|
| 53 |
+
return chat_history
|
| 54 |
+
|
| 55 |
+
# Interfaz Gradio chat dinámica
|
| 56 |
+
with gr.Blocks() as demo:
|
| 57 |
+
gr.Markdown("# ⚡ BATUTO / Prompt Studio — Chat IA + Imagen")
|
| 58 |
+
chat_box = gr.Chatbot()
|
| 59 |
+
msg_input = gr.Textbox(placeholder="Escribe tu mensaje...")
|
| 60 |
+
upload_img = gr.Image(label="Sube una imagen (opcional)", type="pil")
|
| 61 |
+
auto_mode = gr.Checkbox(label="Modo automático: analizar imagen para prompt", value=False)
|
| 62 |
+
send_button = gr.Button("Enviar")
|
| 63 |
+
chat_state = gr.State([])
|
| 64 |
+
|
| 65 |
+
send_button.click(
|
| 66 |
+
chat_mode,
|
| 67 |
+
inputs=[msg_input, upload_img, chat_state, auto_mode],
|
| 68 |
+
outputs=[chat_box, chat_state]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
)
|
| 70 |
|
| 71 |
if __name__ == "__main__":
|
| 72 |
+
demo.launch()
|
| 73 |
+
|
|
|
|
|
|
|
|
|