ivanoctaviogaitansantos's picture
Actualizar app.py
6ec8388 verified
raw
history blame
12.1 kB
import gradio as gr
import requests
import json
import os
import random
import base64
import io
from PIL import Image
from typing import List, Optional
class HyperrealisticPromptGenerator:
def __init__(self):
self.ROLES = [
"nurse", "nun", "maid", "flight attendant", "secretary", "teacher", "schoolgirl", "lawyer",
"doctor", "boudoir model", "fitness model", "elegant judge", "seductive librarian",
"business executive", "policewoman", "female military officer", "WWII-era secretary",
"1960s flight attendant", "seductive maid", "mysterious nurse", "captivating schoolgirl"
]
self.AGES = [
"early 20s youthful vibrance",
"early 20s fresh and vibrant",
"mid 20s graceful confidence",
"mid 20s elegant and fresh",
"early 20s natural glow"
]
self.HAIR_COLORS = [
"deep sapphire blue", "silver platinum", "vibrant ruby red", "glossy jet black",
"luxurious chestnut brown", "emerald green", "vivid amethyst purple",
"chocolate brown", "honey blonde", "burgundy red"
]
self.EYE_COLORS = [
"intense brown", "bright sapphire blue", "emerald green", "golden amber",
"fascinating hazel", "deep violet", "piercing emerald", "mysterious gray",
"vibrant violet", "intense amber"
]
self.HAIR_STYLES = [
"long flowing chestnut hair styled in soft waves",
"sleek straight long black hair",
"luxurious long blonde curls",
"elegant updo with loose cascading strands",
"glossy long brunette hair parted in the middle",
"voluminous curls",
"thick braid over the shoulder",
"loose and silky layers",
"messy chic bun"
]
self.POSES = [
"standing with one leg slightly forward, skirt shifting gently to subtly reveal lace thong, view from knees to head",
"seated on a chair edge, legs crossed, skirt moving slightly, natural sensual expression, low angle from knees",
"leaning against a desk with hips cocked, skirt riding up, captured from knees to head",
"walking with natural sway, skirt flowing, viewed contrapicado from knees",
"adjusting stockings or shoes, skirt slightly lifted revealing thong, viewed low angle knees up"
]
self.SETTINGS = [
"modern office with elegant decor and warm ambient light",
"luxury hotel suite with velvet furnishings and city view",
"classic library with wooden shelves and soft reading lamps",
"outdoor balcony at sunset with urban skyline",
"high-end photo studio with professional soft lighting"
]
self.ATMOSPHERES = [
"soft professional lighting with smooth skin shadows, perfect color balance",
"warm golden hour sunlight creating rich highlights and depth",
"moody cinematic lighting with subtle shadow play",
"gentle romantic candlelight with warm glows",
"sharp studio flash lighting with balanced illumination"
]
self.TECHNICAL_DETAILS = (
"Captured in ultra HD 16K (15360×8640) vertical 9:16 full body format. "
"Canon EOS R5 Cine RAW camera and Canon RF 85mm f/1.2L USM lens at f/1.2 aperture for creamy bokeh and realistic depth of field. "
"ARRI SkyPanel S360-C with soft shadowless 3:1 lighting ratio. "
"Advanced Path Tracing, Physically Based Rendering (PBR), Subsurface Scattering (SSS) for lifelike skin translucency, "
"Ray Tracing for global illumination and reflections. "
"Photogrammetry-based texture mapping, displacement maps for skin pores, delicate fabric weave and lace micro-details. "
"Natural, physics-driven hair strand flow. "
"Composition uses contrapicado low-angle (knee to head) shots emphasizing natural, sensual lingerie reveal."
)
self.CONDITION_FIXED = (
"Wearing elegant thigh-high stockings, no bra, and high stilettos. "
"Delicately revealing a lace thong in a natural, seductive manner, as if caught candidly. "
"Age between 20 and 25, radiating youthfulness and fresh allure. "
"Pose and framing strictly low-angle, knees to head vertical 9:16 aspect ratio, full body filling the frame."
)
def _choose_random(self, options: List[str]) -> str:
return random.choice(options)
def generate_single_prompt(self, role: Optional[str] = None) -> str:
selected_role = role if role else self._choose_random(self.ROLES)
age = self._choose_random(self.AGES)
hair_color = self._choose_random(self.HAIR_COLORS)
eye_color = self._choose_random(self.EYE_COLORS)
hair_style = self._choose_random(self.HAIR_STYLES)
pose = self._choose_random(self.POSES)
setting = self._choose_random(self.SETTINGS)
atmosphere = self._choose_random(self.ATMOSPHERES)
return (
f"```
f"Eyes: {eye_color}\nPose: {pose}\nEnvironment: {setting}\nAtmosphere: {atmosphere}\n"
f"Outfit: {self.CONDITION_FIXED}\nTechnical specs: {self.TECHNICAL_DETAILS}\n```"
)
def generate_prompt_automatic(self):
return self.generate_single_prompt()
gen = HyperrealisticPromptGenerator()
API_KEY = os.getenv("SAMBANOVA_API_KEY")
API_URL = "https://api.sambanova.ai/v1/chat/completions"
headers = {"Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json"}
def process_image(image):
if image is None:
return None
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def analizar_imagen_y_generar_prompt(image_base64):
if not API_KEY:
return "``````"
messages = [
{"role": "system", "content": "Describe images in detailed English."},
{
"role": "user", "content": [
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
{"type": "text", "text": "Provide a detailed English description for a prompt."}
]
}
]
json_data = {"model": "Llama-4-Maverick-17B-128E-Instruct", "messages": messages, "stream": False}
try:
response = requests.post(API_URL, headers=headers, json=json_data)
response.raise_for_status()
text_resp = response.json()["choices"][0]["message"]["content"]
return f"``````"
except Exception as e:
return f"``````"
def chat_sambanova(user_message, image_input, auto_mode, chat_history, loading_state):
updated_history = chat_history[:] if chat_history else []
image_base64 = process_image(image_input) if image_input else None
# Indicador de carga
loading_state = "Procesando..."
yield "", updated_history, "", loading_state # Limpiar input, actualizar chat, error vacío, carga activo
if not API_KEY:
error_msg = "Error: SAMBANOVA_API_KEY no configurada."
updated_history.append((user_message, error_msg))
yield "", updated_history, error_msg, ""
return
if auto_mode and image_base64:
prompt = analizar_imagen_y_generar_prompt(image_base64)
updated_history.append((user_message or "Análisis automático", f"IA - Prompt generado:\n{prompt}"))
yield "", updated_history, "", ""
return
messages = [{"role": "system", "content": "Eres un asistente útil"}]
for user_msg, ai_msg in updated_history:
messages.append({"role": "user", "content": [{"type": "text", "text": user_msg}]})
messages.append({"role": "assistant", "content": ai_msg})
user_content = [{"type": "text", "text": user_message}]
if image_base64:
user_content.append({"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}})
messages.append({"role": "user", "content": user_content})
json_data = {"model": "Llama-4-Maverick-17B-128E-Instruct", "messages": messages, "stream": True}
try:
response = requests.post(API_URL, headers=headers, json=json_data, stream=True)
response.raise_for_status()
collected_text = ""
updated_history.append((user_message, ""))
for line in response.iter_lines(decode_unicode=True):
if line.startswith("data: "):
json_str = line[len("data: "):]
if json_str == "[DONE]":
break
try:
data = json.loads(json_str)
delta = data.get("choices", [{}])[0].get("delta", {})
text_fragment = delta.get("content", "")
collected_text += text_fragment
updated_history[-1] = (user_message, collected_text)
yield "", updated_history, "", "Procesando..."
except json.JSONDecodeError:
continue
yield "", updated_history, "", ""
except requests.exceptions.HTTPError as http_err:
error_msg = f"Error HTTP {http_err.response.status_code}: {http_err.response.text}"
if updated_history:
updated_history[-1] = (user_message, error_msg)
yield "", updated_history, error_msg, ""
except requests.exceptions.ConnectionError:
error_msg = "Error: No se pudo conectar con la API de SambaNova. Verifica tu conexión."
if updated_history:
updated_history[-1] = (user_message, error_msg)
yield "", updated_history, error_msg, ""
except requests.exceptions.Timeout:
error_msg = "Error: La solicitud a la API timed out."
if updated_history:
updated_history[-1] = (user_message, error_msg)
yield "", updated_history, error_msg, ""
except Exception as e:
error_msg = f"Error inesperado: {str(e)}"
if updated_history:
updated_history[-1] = (user_message, error_msg)
yield "", updated_history, error_msg, ""
def generar_prompt_interno():
return gen.generate_prompt_automatic(), ""
with gr.Blocks() as demo:
gr.Markdown("# Hyperrealistic Prompt Generator & Chatbot")
chat_history = gr.State([])
error_display = gr.Textbox(label="Mensajes de error", interactive=False, visible=True)
loading_state = gr.State("")
chatbot = gr.Chatbot(label="Chatbot IA (SambaNova - Llama-4 Maverick)", type='messages')
prompt_output = gr.Markdown(label="Prompt Generado", elem_classes=["prompt-output"])
with gr.Row():
msg = gr.Textbox(label="Escribe tu mensaje", scale=4)
img_input = gr.Image(label="Subir imagen (opcional)", type="pil", scale=2)
with gr.Row():
auto_mode = gr.Checkbox(label="Modo automático (generar prompt desde imagen)", value=False)
btn_send = gr.Button("Enviar mensaje", variant="primary")
btn_gen_prompt = gr.Button("Generar prompt automático", variant="secondary")
copy_button = gr.Button("Copiar Prompt")
with gr.Row():
loading = gr.Markdown(value=lambda x: f"**{x}**" if x else "", label="Estado")
btn_send.click(
fn=chat_sambanova,
inputs=[msg, img_input, auto_mode, chat_history, loading_state],
outputs=[msg, chatbot, chat_history, error_display, loading]
)
msg.submit(
fn=chat_sambanova,
inputs=[msg, img_input, auto_mode, chat_history, loading_state],
outputs=[msg, chatbot, chat_history, error_display, loading]
)
btn_gen_prompt.click(
fn=generar_prompt_interno,
inputs=[],
outputs=[msg, prompt_output]
)
copy_button.click(
fn=None,
_js="() => { navigator.clipboard.writeText(document.querySelector('.prompt-output').innerText); }",
outputs=None
)
if __name__ == "__main__":
try:
demo.launch()
except Exception as e:
print(f"Error al iniciar Gradio: {str(e)}")