Spaces:
Runtime error
Runtime error
File size: 10,267 Bytes
a308962 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import gradio as gr
import os
import json
from datetime import datetime
import logging
# Configuración de logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Importar módulos personalizados
from model_manager import ModelManager
from api_agent import APIAgent
from prompt_generator import PromptGenerator
# Inicializar componentes
model_manager = ModelManager()
api_agent = APIAgent()
prompt_generator = PromptGenerator()
class BATUTOChatbot:
def __init__(self):
self.conversation_history = []
self.config = {
"deepseek_api_key": "",
"openai_api_key": "",
"max_tokens": 400,
"temperature": 0.7
}
def update_config(self, deepseek_key, openai_key, max_tokens, temperature):
"""Actualiza la configuración desde la UI"""
updated = False
if deepseek_key:
self.config["deepseek_api_key"] = deepseek_key
updated = True
if openai_key:
self.config["openai_api_key"] = openai_key
updated = True
if max_tokens:
self.config["max_tokens"] = int(max_tokens)
updated = True
if temperature:
self.config["temperature"] = float(temperature)
updated = True
# Actualizar agentes
model_manager.set_config(self.config)
api_agent.set_config(self.config)
return "✅ Configuración actualizada" if updated else "ℹ️ Sin cambios"
def get_system_status(self):
"""Obtiene el estado del sistema"""
has_deepseek = bool(self.config.get("deepseek_api_key"))
has_openai = bool(self.config.get("openai_api_key"))
models_loaded = model_manager.loaded
status_html = f"""
<div style='padding: 15px; border-radius: 10px; background: #f8f9fa; border: 2px solid #e9ecef;'>
<h4 style='margin-top: 0;'>🔧 Estado del Sistema</h4>
<p><strong>Modelos locales:</strong> {'✅ Cargados' if models_loaded else '🔄 Cargando...'}</p>
<p><strong>DeepSeek API:</strong> {'✅ Configurada' if has_deepseek else '❌ No configurada'}</p>
<p><strong>OpenAI API:</strong> {'✅ Configurada' if has_openai else '❌ No configurada'}</p>
<p><strong>Mensajes en sesión:</strong> {len(self.conversation_history)}</p>
</div>
"""
return status_html
def chat_response(self, message, history):
"""Genera respuesta del chatbot optimizado para HF"""
if not message.strip():
return ""
# Mostrar indicador de typing
yield "🔄 Procesando..."
try:
# Detectar intención y mejorar prompt
intent = prompt_generator.detect_intent(message)
enhanced_prompt = prompt_generator.enhance_prompt(message, intent)
# Intentar usar APIs primero
api_result = api_agent.generate_response(enhanced_prompt, intent["is_code"])
if api_result["response"]:
# Usar respuesta de API
response_text = api_result["response"]
source = api_result["source"]
else:
# Usar modelo local como fallback
response_text = model_manager.generate_local_response(
enhanced_prompt,
intent["is_code"],
max_length=200 # Reducido para HF
)
source = "local"
# Agregar metadata a la respuesta
metadata = f"\n\n---\n*🔧 Fuente: {source.upper()}*"
if intent["is_code"]:
metadata += f" | 💻 *Tipo: Código*"
else:
metadata += f" | 💬 *Tipo: Conversación*"
full_response = response_text + metadata
# Guardar en historial
self.conversation_history.append({
"timestamp": datetime.now().isoformat(),
"user": message,
"bot": response_text,
"source": source,
"intent": intent
})
yield full_response
except Exception as e:
error_msg = f"❌ Error: {str(e)}"
logger.error(f"Error en chat_response: {e}")
yield error_msg
def clear_conversation(self):
"""Limpia la conversación"""
self.conversation_history.clear()
return None, []
# Crear instancia del chatbot
chatbot = BATUTOChatbot()
# Cargar modelos al inicio (async)
def load_models_async():
logger.info("🔄 Cargando modelos en segundo plano...")
model_manager.load_models()
logger.info("✅ Modelos cargados exitosamente")
# Iniciar carga de modelos
import threading
model_loader = threading.Thread(target=load_models_async, daemon=True)
model_loader.start()
# Configuración de la interfaz Gradio para HF
with gr.Blocks(
title="BATUTO Chatbot - Asistente Educativo",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1000px !important;
margin: auto;
}
.chat-container {
height: 500px;
}
.status-panel {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px;
border-radius: 10px;
color: white;
}
"""
) as demo:
gr.Markdown("""
# 🤖 BATUTO Chatbot - Asistente Educativo
**Sistema inteligente con modelos locales y APIs externas**
*Desplegado en Hugging Face Spaces - Versión Optimizada*
""")
with gr.Row():
with gr.Column(scale=2):
# Área de chat
gr.Markdown("### 💬 Conversación")
chatbot_interface = gr.Chatbot(
label="Chat con BATUTO",
height=400,
show_copy_button=True,
container=True
)
msg = gr.Textbox(
label="Escribe tu mensaje",
placeholder="Pregunta sobre programación, explica conceptos, pide ejemplos...",
lines=2,
max_lines=4
)
with gr.Row():
submit_btn = gr.Button("🚀 Enviar", variant="primary")
clear_btn = gr.Button("🧹 Limpiar", variant="secondary")
with gr.Column(scale=1):
# Panel de estado
gr.Markdown("### 📊 Estado del Sistema")
status_display = gr.HTML()
# Configuración rápida
with gr.Accordion("⚙️ Configuración Rápida", open=False):
with gr.Group():
deepseek_key = gr.Textbox(
label="DeepSeek API Key",
type="password",
placeholder="sk-...",
info="Opcional - para respuestas mejoradas"
)
openai_key = gr.Textbox(
label="OpenAI API Key",
type="password",
placeholder="sk-...",
info="Opcional - alternativa"
)
with gr.Row():
max_tokens = gr.Slider(
label="Tokens máx",
minimum=100,
maximum=800,
value=400,
step=50
)
temperature = gr.Slider(
label="Temperatura",
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1
)
save_config_btn = gr.Button("💾 Guardar Config", size="sm")
config_output = gr.Textbox(label="Estado", interactive=False)
# Información
with gr.Accordion("ℹ️ Cómo usar", open=True):
gr.Markdown("""
**Ejemplos:**
- 💻 *"Muéstrame una función Python para ordenar listas"*
- 💬 *"Explica qué es machine learning"*
- 🔧 *"Corrige este código: [tu código]"*
**Fuentes:**
1. 🚀 DeepSeek API (si se configura)
2. ⚡ OpenAI API (si se configura)
3. 🤖 Modelos locales (fallback)
""")
# Event handlers
def handle_submit(message, history):
if not message.strip():
return "", history
return "", history + [[message, None]]
# Conectar el botón de enviar
submit_btn.click(
handle_submit,
inputs=[msg, chatbot_interface],
outputs=[msg, chatbot_interface]
).then(
chatbot.chat_response,
inputs=[msg, chatbot_interface],
outputs=[chatbot_interface]
)
# Enter también envía
msg.submit(
handle_submit,
inputs=[msg, chatbot_interface],
outputs=[msg, chatbot_interface]
).then(
chatbot.chat_response,
inputs=[msg, chatbot_interface],
outputs=[chatbot_interface]
)
# Limpiar chat
clear_btn.click(
chatbot.clear_conversation,
outputs=[msg, chatbot_interface]
)
# Configuración
save_config_btn.click(
chatbot.update_config,
inputs=[deepseek_key, openai_key, max_tokens, temperature],
outputs=[config_output]
).then(
chatbot.get_system_status,
outputs=[status_display]
)
# Actualizar estado al cargar
demo.load(
chatbot.get_system_status,
outputs=[status_display]
)
# Configuración específica para Hugging Face Spaces
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True,
debug=False,
favicon_path=None
) |