Spaces:
Runtime error
Runtime error
Commit
Β·
b72c08a
1
Parent(s):
53ed07c
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,165 +1,81 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
from llama_index import
|
| 5 |
-
from llama_index.
|
| 6 |
-
from llama_index
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
import chromadb
|
| 12 |
-
import pandas as pd
|
| 13 |
-
from sqlalchemy import create_engine
|
| 14 |
-
from llama_index import SQLDatabase, NLSQLTableQueryEngine, QueryEngineTool
|
| 15 |
-
from llama_index.openai_agent import OpenAIAgent
|
| 16 |
-
from chainlit import ChainLit
|
| 17 |
-
|
| 18 |
-
# Embedding Model and Low-level model
|
| 19 |
-
embed_model = OpenAIEmbedding()
|
| 20 |
-
chunk_size = 1000
|
| 21 |
-
chunk_overlap = 100
|
| 22 |
-
llm = OpenAI(
|
| 23 |
-
temperature=0,
|
| 24 |
-
model="gpt-4-32k",
|
| 25 |
-
streaming=True
|
| 26 |
-
)
|
| 27 |
-
service_context = ServiceContext.from_defaults(
|
| 28 |
-
llm=llm,
|
| 29 |
-
chunk_size=chunk_size,
|
| 30 |
-
embed_model=embed_model
|
| 31 |
)
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
#
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
class AutoRetrieveModel(BaseModel):
|
| 69 |
-
query: str = Field(..., description="natural language query string")
|
| 70 |
-
filter_key_list: List[str] = Field(
|
| 71 |
-
..., description="List of metadata filter field names"
|
| 72 |
-
)
|
| 73 |
-
filter_value_list: List[str] = Field(
|
| 74 |
-
...,
|
| 75 |
-
description=(
|
| 76 |
-
"List of metadata filter field values (corresponding to names specified in filter_key_list)"
|
| 77 |
-
)
|
| 78 |
)
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
for k, v in zip(filter_key_list, filter_value_list)
|
| 84 |
-
]
|
| 85 |
-
retriever = VectorIndexRetriever(
|
| 86 |
-
wiki_vector_index, filters=MetadataFilters(filters=exact_match_filters), top_k=top_k
|
| 87 |
)
|
| 88 |
-
query_engine = RetrieverQueryEngine.from_args(retriever)
|
| 89 |
-
response = query_engine.query(query)
|
| 90 |
-
return str(response)
|
| 91 |
-
|
| 92 |
-
description = f"""\
|
| 93 |
-
Use this tool to look up semantic information about films.
|
| 94 |
-
The vector database schema is given below:
|
| 95 |
-
{vector_store_info.json()}
|
| 96 |
-
"""
|
| 97 |
-
|
| 98 |
-
auto_retrieve_tool = FunctionTool.from_defaults(
|
| 99 |
-
fn=auto_retrieve_fn,
|
| 100 |
-
name="Auto_Retriever",
|
| 101 |
-
description=description,
|
| 102 |
-
fn_schema=AutoRetrieveModel
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
-
# SQL setup and tool definition
|
| 106 |
-
barbie_df = pd.read_csv("barbie_data/barbie.csv")
|
| 107 |
-
oppenheimer_df = pd.read_csv("oppenheimer_data/oppenheimer.csv")
|
| 108 |
-
engine = create_engine("sqlite+pysqlite:///:memory:")
|
| 109 |
-
barbie_df.to_sql(name='barbie', con=engine)
|
| 110 |
-
oppenheimer_df.to_sql(name='oppenheimer', con=engine)
|
| 111 |
-
|
| 112 |
-
sql_database = SQLDatabase(
|
| 113 |
-
engine=engine,
|
| 114 |
-
include_tables=['barbie', 'oppenheimer']
|
| 115 |
-
)
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
sql_tool = QueryEngineTool.from_defaults(
|
| 123 |
-
query_engine=sql_query_engine,
|
| 124 |
-
name="Natural_Language_to_SQL_Tool",
|
| 125 |
-
description=(
|
| 126 |
-
"Useful for translating a natural language query into a SQL query."
|
| 127 |
)
|
| 128 |
-
)
|
|
|
|
| 129 |
|
| 130 |
-
# Combining both tools into a single OpenAI Agent
|
| 131 |
-
barbenheimer_agent = OpenAIAgent.from_tools(
|
| 132 |
-
tools=[auto_retrieve_tool, sql_tool]
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
-
# Initialize the ChainLit app
|
| 136 |
-
cl = ChainLit()
|
| 137 |
-
|
| 138 |
-
# On-Message Function
|
| 139 |
@cl.on_message
|
| 140 |
-
def
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
# Extracting relevant information from the query result
|
| 147 |
-
tool_name = query_result.tool_name
|
| 148 |
-
response = query_result.response
|
| 149 |
-
|
| 150 |
-
if tool_name == "Auto_Retriever":
|
| 151 |
-
# Processing for semantic information retrieval
|
| 152 |
-
return "Auto_Retriever", f"Semantic Information:\n{response}"
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
| 161 |
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
cl.run()
|
| 165 |
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import openai
|
| 3 |
+
import logging
|
| 4 |
+
from llama_index.query_engine.retriever_query_engine import RetrieverQueryEngine
|
| 5 |
+
from llama_index.callbacks.base import CallbackManager
|
| 6 |
+
from llama_index import (
|
| 7 |
+
LLMPredictor,
|
| 8 |
+
ServiceContext,
|
| 9 |
+
StorageContext,
|
| 10 |
+
load_index_from_storage,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
)
|
| 12 |
+
from langchain.chat_models import ChatOpenAI
|
| 13 |
+
import chainlit as cl
|
| 14 |
+
|
| 15 |
+
# Set up logging for debugging and monitoring
|
| 16 |
+
logging.basicConfig(level=logging.INFO)
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
# Load OpenAI API key
|
| 20 |
+
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
# Attempt to rebuild storage context and load index
|
| 24 |
+
logger.info("Attempting to load index from storage.")
|
| 25 |
+
storage_context = StorageContext.from_defaults(persist_dir="./storage")
|
| 26 |
+
index = load_index_from_storage(storage_context)
|
| 27 |
+
except Exception as e:
|
| 28 |
+
# If index loading fails, create a new index
|
| 29 |
+
logger.warning(f"Failed to load index from storage: {e}. Creating a new index.")
|
| 30 |
+
from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader
|
| 31 |
+
|
| 32 |
+
documents = SimpleDirectoryReader("./data").load_data()
|
| 33 |
+
index = GPTVectorStoreIndex.from_documents(documents)
|
| 34 |
+
index.storage_context.persist()
|
| 35 |
+
logger.info("New index created and persisted.")
|
| 36 |
+
|
| 37 |
+
@cl.on_chat_start
|
| 38 |
+
async def factory():
|
| 39 |
+
embed_model = OpenAIEmbedding()
|
| 40 |
+
chunk_size = 1000
|
| 41 |
+
|
| 42 |
+
llm_predictor = LLMPredictor(
|
| 43 |
+
llm=ChatOpenAI(
|
| 44 |
+
temperature=0,
|
| 45 |
+
model_name="gpt-4-32k",
|
| 46 |
+
streaming=True,
|
| 47 |
+
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
)
|
| 49 |
+
service_context = ServiceContext.from_defaults(
|
| 50 |
+
llm_predictor=llm_predictor,
|
| 51 |
+
chunk_size=chunk_size,
|
| 52 |
+
callback_manager=CallbackManager([cl.LlamaIndexCallbackHandler()]),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
query_engine = index.as_query_engine(
|
| 56 |
+
service_context=service_context,
|
| 57 |
+
streaming=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
)
|
| 59 |
+
logger.info("Query engine initialized.") # to facilitate debugging and monitoring
|
| 60 |
+
cl.user_session.set("query_engine", query_engine)
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
@cl.on_message
|
| 63 |
+
async def main(message):
|
| 64 |
+
try:
|
| 65 |
+
query_engine = cl.user_session.get("query_engine") # type: RetrieverQueryEngine
|
| 66 |
+
logger.info(f"Received message: {message}")
|
| 67 |
+
response = await cl.make_async(query_engine.query)(message)
|
| 68 |
+
response_message = cl.Message(content="")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
for token in response.response_gen:
|
| 71 |
+
await response_message.stream_token(token=token)
|
| 72 |
+
|
| 73 |
+
if response.response_txt:
|
| 74 |
+
response_message.content = response.response_txt
|
| 75 |
+
|
| 76 |
+
await response_message.send()
|
| 77 |
+
logger.info(f"Response sent: {response.response_txt}")
|
| 78 |
|
| 79 |
+
except Exception as e:
|
| 80 |
+
logger.error(f"An error occurred while processing the message: {e}")
|
|
|
|
| 81 |
|