Spaces:
Runtime error
Runtime error
Commit
Β·
a2c1b0b
1
Parent(s):
9227993
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,110 +1,165 @@
|
|
| 1 |
-
import
|
| 2 |
-
from
|
| 3 |
-
from
|
| 4 |
-
from
|
| 5 |
-
from
|
| 6 |
-
from
|
| 7 |
-
from
|
| 8 |
-
from
|
| 9 |
-
from
|
| 10 |
-
from
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
)
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
)
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
chain_type="stuff",
|
| 67 |
-
return_source_documents=True,
|
| 68 |
-
retriever=docsearch.as_retriever(),
|
| 69 |
-
chain_type_kwargs = {"prompt": prompt}
|
| 70 |
)
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
# Get the documents from the user session
|
| 92 |
-
docs = res["source_documents"]
|
| 93 |
-
metadatas = [doc.metadata for doc in docs]
|
| 94 |
-
all_sources = [m["source"] for m in metadatas]
|
| 95 |
-
|
| 96 |
-
for source in all_sources:
|
| 97 |
-
if source in visited_sources:
|
| 98 |
-
continue
|
| 99 |
-
visited_sources.add(source)
|
| 100 |
-
# Create the text element referenced in the message
|
| 101 |
-
source_elements.append(
|
| 102 |
-
cl.Text(content="https://www.imdb.com" + source, name="Review URL")
|
| 103 |
-
)
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
else:
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
await cl.Message(content=answer, elements=source_elements).send()
|
|
|
|
| 1 |
+
from llama_index import ServiceContext, SimpleNodeParser, TokenTextSplitter, OpenAI, OpenAIEmbedding
|
| 2 |
+
from llama_index.vector_stores import ChromaVectorStore
|
| 3 |
+
from llama_index.storage.storage_context import StorageContext
|
| 4 |
+
from llama_index import VectorStoreIndex, WikipediaReader
|
| 5 |
+
from llama_index.tools import FunctionTool
|
| 6 |
+
from llama_index.vector_stores.types import VectorStoreInfo, MetadataInfo, ExactMatchFilter, MetadataFilters
|
| 7 |
+
from llama_index.retrievers import VectorIndexRetriever
|
| 8 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
| 9 |
+
from typing import List, Tuple, Any
|
| 10 |
+
from pydantic import BaseModel, Field
|
| 11 |
+
import chromadb
|
| 12 |
+
import pandas as pd
|
| 13 |
+
from sqlalchemy import create_engine
|
| 14 |
+
from llama_index import SQLDatabase, NLSQLTableQueryEngine, QueryEngineTool
|
| 15 |
+
from llama_index.openai_agent import OpenAIAgent
|
| 16 |
+
from chainlit import ChainLit
|
| 17 |
+
|
| 18 |
+
# Embedding Model and Low-level model
|
| 19 |
+
embed_model = OpenAIEmbedding()
|
| 20 |
+
chunk_size = 1000
|
| 21 |
+
chunk_overlap = 100
|
| 22 |
+
llm = OpenAI(
|
| 23 |
+
temperature=0,
|
| 24 |
+
model="gpt-4-32k",
|
| 25 |
+
streaming=True
|
| 26 |
)
|
| 27 |
+
service_context = ServiceContext.from_defaults(
|
| 28 |
+
llm=llm,
|
| 29 |
+
chunk_size=chunk_size,
|
| 30 |
+
embed_model=embed_model
|
| 31 |
+
)
|
| 32 |
+
text_splitter = TokenTextSplitter(
|
| 33 |
+
chunk_size=chunk_size,
|
| 34 |
+
chunk_overlap=chunk_overlap
|
| 35 |
+
)
|
| 36 |
+
node_parser = SimpleNodeParser(text_splitter=text_splitter)
|
| 37 |
+
|
| 38 |
+
# Vector Storage and Context
|
| 39 |
+
chroma_client = chromadb.Client()
|
| 40 |
+
chroma_collection = chroma_client.create_collection("wikipedia_barbie_opp")
|
| 41 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
| 42 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
| 43 |
+
|
| 44 |
+
# Your Wikipedia docs retrieval
|
| 45 |
+
movie_list = ["Barbie (film)", "Oppenheimer (film)"]
|
| 46 |
+
wiki_docs = WikipediaReader().load_data(pages=movie_list, auto_suggest=False)
|
| 47 |
+
|
| 48 |
+
# Parsing and storing vectors
|
| 49 |
+
wiki_vector_index = VectorStoreIndex([], storage_context=storage_context, service_context=service_context)
|
| 50 |
+
for movie, wiki_doc in zip(movie_list, wiki_docs):
|
| 51 |
+
nodes = node_parser.get_nodes_from_documents([wiki_doc])
|
| 52 |
+
for node in nodes:
|
| 53 |
+
node.metadata = {"title": movie}
|
| 54 |
+
wiki_vector_index.insert_nodes(nodes)
|
| 55 |
+
|
| 56 |
+
# Defining the tools for vector search and SQL query
|
| 57 |
+
top_k = 3
|
| 58 |
+
vector_store_info = VectorStoreInfo(
|
| 59 |
+
content_info="semantic information about movies",
|
| 60 |
+
metadata_info=[MetadataInfo(
|
| 61 |
+
name="title",
|
| 62 |
+
type="str",
|
| 63 |
+
description="title of the movie, one of [Barbie (film), Oppenheimer (film)]",
|
| 64 |
+
)]
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
# Create PyDantic model for auto retrieval
|
| 68 |
+
class AutoRetrieveModel(BaseModel):
|
| 69 |
+
query: str = Field(..., description="natural language query string")
|
| 70 |
+
filter_key_list: List[str] = Field(
|
| 71 |
+
..., description="List of metadata filter field names"
|
| 72 |
)
|
| 73 |
+
filter_value_list: List[str] = Field(
|
| 74 |
+
...,
|
| 75 |
+
description=(
|
| 76 |
+
"List of metadata filter field values (corresponding to names specified in filter_key_list)"
|
| 77 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
)
|
| 79 |
|
| 80 |
+
def auto_retrieve_fn(query: str, filter_key_list: List[str], filter_value_list: List[str]):
|
| 81 |
+
exact_match_filters = [
|
| 82 |
+
ExactMatchFilter(key=k, value=v)
|
| 83 |
+
for k, v in zip(filter_key_list, filter_value_list)
|
| 84 |
+
]
|
| 85 |
+
retriever = VectorIndexRetriever(
|
| 86 |
+
wiki_vector_index, filters=MetadataFilters(filters=exact_match_filters), top_k=top_k
|
| 87 |
+
)
|
| 88 |
+
query_engine = RetrieverQueryEngine.from_args(retriever)
|
| 89 |
+
response = query_engine.query(query)
|
| 90 |
+
return str(response)
|
| 91 |
+
|
| 92 |
+
description = f"""\
|
| 93 |
+
Use this tool to look up semantic information about films.
|
| 94 |
+
The vector database schema is given below:
|
| 95 |
+
{vector_store_info.json()}
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
auto_retrieve_tool = FunctionTool.from_defaults(
|
| 99 |
+
fn=auto_retrieve_fn,
|
| 100 |
+
name="Auto_Retriever",
|
| 101 |
+
description=description,
|
| 102 |
+
fn_schema=AutoRetrieveModel
|
| 103 |
+
)
|
| 104 |
|
| 105 |
+
# SQL setup and tool definition
|
| 106 |
+
barbie_df = pd.read_csv("barbie_data/barbie.csv")
|
| 107 |
+
oppenheimer_df = pd.read_csv("oppenheimer_data/oppenheimer.csv")
|
| 108 |
+
engine = create_engine("sqlite+pysqlite:///:memory:")
|
| 109 |
+
barbie_df.to_sql(name='barbie', con=engine)
|
| 110 |
+
oppenheimer_df.to_sql(name='oppenheimer', con=engine)
|
| 111 |
|
| 112 |
+
sql_database = SQLDatabase(
|
| 113 |
+
engine=engine,
|
| 114 |
+
include_tables=['barbie', 'oppenheimer']
|
| 115 |
+
)
|
| 116 |
|
| 117 |
+
sql_query_engine = NLSQLTableQueryEngine(
|
| 118 |
+
sql_database=sql_database,
|
| 119 |
+
tables=['barbie', 'oppenheimer']
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
sql_tool = QueryEngineTool.from_defaults(
|
| 123 |
+
query_engine=sql_query_engine,
|
| 124 |
+
name="Natural_Language_to_SQL_Tool",
|
| 125 |
+
description=(
|
| 126 |
+
"Useful for translating a natural language query into a SQL query."
|
| 127 |
)
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# Combining both tools into a single OpenAI Agent
|
| 131 |
+
barbenheimer_agent = OpenAIAgent.from_tools(
|
| 132 |
+
tools=[auto_retrieve_tool, sql_tool]
|
| 133 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
# Initialize the ChainLit app
|
| 136 |
+
cl = ChainLit()
|
| 137 |
+
|
| 138 |
+
# On-Message Function
|
| 139 |
+
@cl.on_message
|
| 140 |
+
def handle_message(message: str, sender: str) -> Tuple[str, Any]:
|
| 141 |
+
query_result = barbenheimer_agent.query(
|
| 142 |
+
query=message,
|
| 143 |
+
user_id=sender
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
# Extracting relevant information from the query result
|
| 147 |
+
tool_name = query_result.tool_name
|
| 148 |
+
response = query_result.response
|
| 149 |
+
|
| 150 |
+
if tool_name == "Auto_Retriever":
|
| 151 |
+
# Processing for semantic information retrieval
|
| 152 |
+
return "Auto_Retriever", f"Semantic Information:\n{response}"
|
| 153 |
+
|
| 154 |
+
elif tool_name == "Natural_Language_to_SQL_Tool":
|
| 155 |
+
# Processing for SQL-based information
|
| 156 |
+
return "Natural_Language_to_SQL_Tool", f"SQL Query Result:\n{response}"
|
| 157 |
+
|
| 158 |
else:
|
| 159 |
+
# Handling unrecognized tool queries
|
| 160 |
+
return "Unknown", "I couldn't understand your request."
|
| 161 |
+
|
| 162 |
+
# Running the app
|
| 163 |
+
if __name__ == '__main__':
|
| 164 |
+
cl.run()
|
| 165 |
|
|
|