Spaces:
Runtime error
Runtime error
| import os | |
| import openai | |
| import logging | |
| from llama_index.query_engine.retriever_query_engine import RetrieverQueryEngine | |
| from llama_index.callbacks.base import CallbackManager | |
| from llama_index import ( | |
| LLMPredictor, | |
| ServiceContext, | |
| StorageContext, | |
| load_index_from_storage, | |
| ) | |
| from langchain.chat_models import ChatOpenAI | |
| import chainlit as cl | |
| # Set up logging for debugging and monitoring | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # Load OpenAI API key | |
| openai.api_key = os.environ.get("OPENAI_API_KEY") | |
| try: | |
| # Attempt to rebuild storage context and load index | |
| logger.info("Attempting to load index from storage.") | |
| storage_context = StorageContext.from_defaults(persist_dir="./storage") | |
| index = load_index_from_storage(storage_context) | |
| except Exception as e: | |
| # If index loading fails, create a new index | |
| logger.warning(f"Failed to load index from storage: {e}. Creating a new index.") | |
| from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader | |
| documents = SimpleDirectoryReader("./data").load_data() | |
| index = GPTVectorStoreIndex.from_documents(documents) | |
| index.storage_context.persist() | |
| logger.info("New index created and persisted.") | |
| async def factory(): | |
| #embed_model = OpenAIEmbedding() | |
| chunk_size = 1000 | |
| llm_predictor = LLMPredictor( | |
| llm=ChatOpenAI( | |
| temperature=0, | |
| model_name="gpt-4", | |
| streaming=True, | |
| ), | |
| ) | |
| service_context = ServiceContext.from_defaults( | |
| llm_predictor=llm_predictor, | |
| chunk_size=chunk_size, | |
| callback_manager=CallbackManager([cl.LlamaIndexCallbackHandler()]), | |
| ) | |
| query_engine = index.as_query_engine( | |
| service_context=service_context, | |
| streaming=True, | |
| ) | |
| logger.info("Query engine initialized.") # to facilitate debugging and monitoring | |
| cl.user_session.set("query_engine", query_engine) | |
| async def main(message): | |
| try: | |
| query_engine = cl.user_session.get("query_engine") # type: RetrieverQueryEngine | |
| logger.info(f"Received message: {message}") | |
| response = await cl.make_async(query_engine.query)(message) | |
| response_message = cl.Message(content="") | |
| # Logic to prepare answer and source_elements | |
| for token in response.response_gen: | |
| await response_message.stream_token(token=token) | |
| if response.response_txt: | |
| response_message.content = response.response_txt | |
| # Integrated new message object | |
| if answer: # conditional to when is not None | |
| await cl.Message(content=answer, elements=source_elements).send() | |
| await response_message.send() | |
| logger.info(f"Response sent: {response.response_txt}") | |
| except Exception as e: | |
| logger.error(f"An error occurred while processing the message: {e}") | |