import gradio as gr from matplotlib import gridspec import matplotlib.pyplot as plt import numpy as np from PIL import Image import torch from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation, pipeline MODEL_ID = "nvidia/segformer-b0-finetuned-cityscapes-768-768" processor = AutoImageProcessor.from_pretrained(MODEL_ID) model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID) def ade_palette(): """ADE20K palette that maps each class to RGB values.""" return [ [204, 87, 92],[112, 185, 212],[45, 189, 106],[234, 123, 67],[78, 56, 123],[210, 32, 89], [90, 180, 56],[155, 102, 200],[33, 147, 176],[255, 183, 76],[67, 123, 89],[190, 60, 45], [134, 112, 200],[56, 45, 189],[200, 56, 123],[87, 92, 204],[120, 56, 123],[45, 78, 123], [123, 123, 123] ] labels_list = [] with open("labels.txt", "r", encoding="utf-8") as fp: for line in fp: labels_list.append(line.rstrip("\n")) colormap = np.asarray(ade_palette(), dtype=np.uint8) def label_to_color_image(label): if label.ndim != 2: raise ValueError("Expect 2-D input label") if np.max(label) >= len(colormap): raise ValueError("label value too large.") return colormap[label] def draw_plot(pred_img, seg_np): fig = plt.figure(figsize=(20, 15)) grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) plt.subplot(grid_spec[0]) plt.imshow(pred_img) plt.axis('off') LABEL_NAMES = np.asarray(labels_list) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) unique_labels = np.unique(seg_np.astype("uint8")) ax = plt.subplot(grid_spec[1]) plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") ax.yaxis.tick_right() plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) plt.xticks([], []) ax.tick_params(width=0.0, labelsize=25) return fig def run_inference(input_img): # input: numpy array from gradio -> PIL img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img if img.mode != "RGB": img = img.convert("RGB") inputs = processor(images=img, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # (1, C, h/4, w/4) # resize to original upsampled = torch.nn.functional.interpolate( logits, size=img.size[::-1], mode="bilinear", align_corners=False ) seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) # (H,W) # colorize & overlay color_seg = colormap[seg] # (H,W,3) pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8) # 추가 부분 total_pixels = seg.size unique_labels, counts = np.unique(seg, return_counts=True) # gr.Label label_results = {} for label_id, count in zip(unique_labels, counts): class_name = labels_list[label_id] percentage = count / total_pixels label_results[class_name] = percentage fig = draw_plot(pred_img, seg) return fig, label_results # 인터페이스 demo = gr.Interface( fn=run_inference, inputs=gr.Image(type="numpy", label="Input Image"), outputs=[ gr.Plot(label="Overlay + Legend"), gr.Label(label="Class Proportions", num_top_classes=5) ], examples=[ "ADE_val_00000001.jpeg", "ADE_val_00001248.jpg", "cityscapes_1.jpg", "cityscapes_2.jpg", "cityscapes_3.jpg", "cityscapes_4.jpg", "cityscapes_5.jpg" ], flagging_mode="never", cache_examples=False, ) if __name__ == "__main__": demo.launch()