Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,30 +1,29 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
-
from PIL import Image, ImageEnhance
|
| 4 |
import numpy as np
|
| 5 |
import logging
|
| 6 |
import cv2
|
| 7 |
from rembg import remove
|
| 8 |
-
import io
|
| 9 |
|
| 10 |
# Setup logging
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
-
logger.info("🚀
|
| 15 |
|
| 16 |
def create_clothing_mask(image):
|
| 17 |
"""Create mask for upper body clothing area"""
|
| 18 |
width, height = image.size
|
| 19 |
mask = np.zeros((height, width), dtype=np.uint8)
|
| 20 |
|
| 21 |
-
#
|
| 22 |
y_start = int(height * 0.15)
|
| 23 |
y_end = int(height * 0.70)
|
| 24 |
x_start = int(width * 0.20)
|
| 25 |
x_end = int(width * 0.80)
|
| 26 |
|
| 27 |
-
#
|
| 28 |
center_x = (x_start + x_end) // 2
|
| 29 |
center_y = (y_start + y_end) // 2
|
| 30 |
radius_x = (x_end - x_start) // 2
|
|
@@ -41,22 +40,19 @@ def create_clothing_mask(image):
|
|
| 41 |
|
| 42 |
def enhance_image(image):
|
| 43 |
"""Enhance image quality"""
|
| 44 |
-
# Increase sharpness
|
| 45 |
enhancer = ImageEnhance.Sharpness(image)
|
| 46 |
image = enhancer.enhance(1.3)
|
| 47 |
|
| 48 |
-
# Increase contrast slightly
|
| 49 |
enhancer = ImageEnhance.Contrast(image)
|
| 50 |
image = enhancer.enhance(1.1)
|
| 51 |
|
| 52 |
-
# Increase color saturation
|
| 53 |
enhancer = ImageEnhance.Color(image)
|
| 54 |
image = enhancer.enhance(1.1)
|
| 55 |
|
| 56 |
return image
|
| 57 |
|
| 58 |
def remove_garment_background(garment_img):
|
| 59 |
-
"""Remove background from garment
|
| 60 |
try:
|
| 61 |
logger.info("Removing garment background...")
|
| 62 |
output = remove(garment_img)
|
|
@@ -66,16 +62,13 @@ def remove_garment_background(garment_img):
|
|
| 66 |
return garment_img
|
| 67 |
|
| 68 |
def blend_images(person_img, garment_img, mask):
|
| 69 |
-
"""Blend garment onto person
|
| 70 |
-
# Convert to numpy arrays
|
| 71 |
person_array = np.array(person_img).astype(float)
|
| 72 |
garment_array = np.array(garment_img).astype(float)
|
| 73 |
mask_array = np.array(mask).astype(float) / 255.0
|
| 74 |
|
| 75 |
-
# Expand mask to RGB
|
| 76 |
mask_3ch = np.stack([mask_array] * 3, axis=2)
|
| 77 |
|
| 78 |
-
# Blend
|
| 79 |
blended = (garment_array * mask_3ch + person_array * (1 - mask_3ch))
|
| 80 |
|
| 81 |
return Image.fromarray(blended.astype(np.uint8))
|
|
@@ -86,14 +79,11 @@ def match_colors(person_img, garment_img, mask):
|
|
| 86 |
garment_array = np.array(garment_img)
|
| 87 |
mask_array = np.array(mask) / 255.0
|
| 88 |
|
| 89 |
-
# Calculate average color in non-masked region of person
|
| 90 |
person_sample = person_array * (1 - mask_array[:, :, np.newaxis])
|
| 91 |
person_mean = np.mean(person_sample[person_sample > 0])
|
| 92 |
|
| 93 |
-
# Calculate average color of garment
|
| 94 |
garment_mean = np.mean(garment_array)
|
| 95 |
|
| 96 |
-
# Adjust garment brightness to match person
|
| 97 |
if garment_mean > 0:
|
| 98 |
adjustment = person_mean / garment_mean
|
| 99 |
garment_adjusted = np.clip(garment_array * adjustment, 0, 255).astype(np.uint8)
|
|
@@ -103,58 +93,44 @@ def match_colors(person_img, garment_img, mask):
|
|
| 103 |
|
| 104 |
@spaces.GPU(duration=60)
|
| 105 |
def virtual_tryon(person_image, garment_image, progress=gr.Progress()):
|
| 106 |
-
"""
|
| 107 |
-
Virtual try-on function
|
| 108 |
-
"""
|
| 109 |
try:
|
| 110 |
-
# Validation
|
| 111 |
if person_image is None:
|
| 112 |
raise gr.Error("❌ Please upload a person's photo!")
|
| 113 |
|
| 114 |
if garment_image is None:
|
| 115 |
raise gr.Error("❌ Please upload a garment photo!")
|
| 116 |
|
| 117 |
-
logger.info("
|
| 118 |
-
logger.info("🎯 Starting Virtual Try-On Process")
|
| 119 |
-
logger.info(f"Person: {person_image.size}, Garment: {garment_image.size}")
|
| 120 |
|
| 121 |
-
|
| 122 |
-
progress(0.1, desc="📸 Preprocessing images...")
|
| 123 |
person_img = person_image.convert("RGB")
|
| 124 |
garment_img = garment_image.convert("RGB")
|
| 125 |
|
| 126 |
-
# Resize to standard size
|
| 127 |
target_size = (512, 768)
|
| 128 |
person_img = person_img.resize(target_size, Image.Resampling.LANCZOS)
|
| 129 |
garment_img = garment_img.resize(target_size, Image.Resampling.LANCZOS)
|
| 130 |
|
| 131 |
-
# Step 2: Remove garment background
|
| 132 |
progress(0.3, desc="🎨 Processing garment...")
|
| 133 |
garment_nobg = remove_garment_background(garment_img)
|
| 134 |
|
| 135 |
-
|
| 136 |
-
progress(0.4, desc="✨ Enhancing garment...")
|
| 137 |
garment_enhanced = enhance_image(garment_nobg)
|
| 138 |
|
| 139 |
-
|
| 140 |
-
progress(0.5, desc="🎯 Creating clothing mask...")
|
| 141 |
mask = create_clothing_mask(person_img)
|
| 142 |
|
| 143 |
-
# Step 5: Match colors
|
| 144 |
progress(0.6, desc="🎨 Matching colors...")
|
| 145 |
garment_matched = match_colors(person_img, garment_enhanced, mask)
|
| 146 |
|
| 147 |
-
|
| 148 |
-
progress(0.8, desc="✨ Applying garment...")
|
| 149 |
result = blend_images(person_img, garment_matched, mask)
|
| 150 |
|
| 151 |
-
# Step 7: Final enhancement
|
| 152 |
progress(0.9, desc="🎨 Final touches...")
|
| 153 |
result = enhance_image(result)
|
| 154 |
|
| 155 |
progress(1.0, desc="✅ Complete!")
|
| 156 |
-
logger.info("✅
|
| 157 |
-
logger.info("=" * 50)
|
| 158 |
|
| 159 |
return result
|
| 160 |
|
|
@@ -162,293 +138,94 @@ def virtual_tryon(person_image, garment_image, progress=gr.Progress()):
|
|
| 162 |
logger.error(f"❌ Error: {str(e)}")
|
| 163 |
import traceback
|
| 164 |
traceback.print_exc()
|
| 165 |
-
raise gr.Error(f"❌
|
| 166 |
|
| 167 |
-
#
|
| 168 |
-
|
| 169 |
-
#
|
| 170 |
-
|
| 171 |
-
max-width: 1400px;
|
| 172 |
-
}
|
| 173 |
-
.gradio-container {
|
| 174 |
-
font-family: 'Inter', sans-serif;
|
| 175 |
-
}
|
| 176 |
-
.gr-button-primary {
|
| 177 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 178 |
border: none !important;
|
| 179 |
-
font-weight: 600 !important;
|
| 180 |
-
}
|
| 181 |
-
.gr-button-primary:hover {
|
| 182 |
-
transform: translateY(-2px);
|
| 183 |
-
box-shadow: 0 10px 20px rgba(0,0,0,0.2);
|
| 184 |
-
transition: all 0.3s;
|
| 185 |
}
|
| 186 |
footer {display: none !important;}
|
| 187 |
"""
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
| 195 |
gr.Markdown("""
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
Perfect for fashion e-commerce, styling apps, and virtual wardrobes!
|
| 201 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
# Main Interface
|
| 206 |
-
with gr.Row():
|
| 207 |
-
# Left - Inputs
|
| 208 |
-
with gr.Column(scale=1):
|
| 209 |
-
gr.Markdown("### 📤 Upload Images")
|
| 210 |
-
|
| 211 |
-
person_input = gr.Image(
|
| 212 |
-
label="👤 Person Photo",
|
| 213 |
-
type="pil",
|
| 214 |
-
sources=["upload", "clipboard"],
|
| 215 |
-
height=400
|
| 216 |
-
)
|
| 217 |
-
|
| 218 |
-
garment_input = gr.Image(
|
| 219 |
-
label="👔 Garment Photo",
|
| 220 |
-
type="pil",
|
| 221 |
-
sources=["upload", "clipboard"],
|
| 222 |
-
height=400
|
| 223 |
-
)
|
| 224 |
-
|
| 225 |
-
with gr.Row():
|
| 226 |
-
clear_btn = gr.ClearButton(
|
| 227 |
-
components=[person_input, garment_input],
|
| 228 |
-
value="🗑️ Clear All",
|
| 229 |
-
scale=1
|
| 230 |
-
)
|
| 231 |
-
submit_btn = gr.Button(
|
| 232 |
-
"✨ Generate Try-On",
|
| 233 |
-
variant="primary",
|
| 234 |
-
scale=2,
|
| 235 |
-
size="lg"
|
| 236 |
-
)
|
| 237 |
-
|
| 238 |
-
# Right - Output
|
| 239 |
-
with gr.Column(scale=1):
|
| 240 |
-
gr.Markdown("### 🎯 Try-On Result")
|
| 241 |
-
|
| 242 |
-
output_image = gr.Image(
|
| 243 |
-
label="Virtual Try-On Result",
|
| 244 |
-
type="pil",
|
| 245 |
-
height=850
|
| 246 |
-
)
|
| 247 |
-
|
| 248 |
-
# Tips Section
|
| 249 |
-
with gr.Accordion("💡 Tips for Best Results", open=False):
|
| 250 |
-
gr.Markdown("""
|
| 251 |
-
### Person Photo Tips:
|
| 252 |
-
- ✅ Use clear, well-lit photos
|
| 253 |
-
- ✅ Person should face forward
|
| 254 |
-
- ✅ Upper body should be fully visible
|
| 255 |
-
- ✅ Plain or simple backgrounds work best
|
| 256 |
-
- ✅ Avoid busy patterns on current clothing
|
| 257 |
-
|
| 258 |
-
### Garment Photo Tips:
|
| 259 |
-
- ✅ Clear photo of the garment (flat lay or on hanger)
|
| 260 |
-
- ✅ Good lighting showing fabric details
|
| 261 |
-
- ✅ Full garment visible
|
| 262 |
-
- ✅ Plain background preferred
|
| 263 |
-
- ✅ No models wearing the garment (for best results)
|
| 264 |
-
|
| 265 |
-
### Expected Results:
|
| 266 |
-
- ⏱️ Processing time: 10-20 seconds
|
| 267 |
-
- 📐 Output resolution: 512x768 pixels
|
| 268 |
-
- 🎨 Realistic blending with natural lighting
|
| 269 |
-
""")
|
| 270 |
-
|
| 271 |
-
# API Documentation
|
| 272 |
-
with gr.Accordion("📱 iOS App Integration Guide", open=False):
|
| 273 |
-
gr.Markdown("""
|
| 274 |
-
## REST API Endpoint
|
| 275 |
-
```
|
| 276 |
-
POST https://gk2291-mirro-app-server.hf.space/api/predict
|
| 277 |
-
```
|
| 278 |
-
|
| 279 |
-
### Request Format (JSON)
|
| 280 |
```json
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
```
|
| 288 |
-
|
| 289 |
-
|
| 290 |
```json
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
}
|
| 295 |
```
|
| 296 |
-
|
| 297 |
-
### Swift Implementation
|
| 298 |
-
```swift
|
| 299 |
-
import Foundation
|
| 300 |
-
import UIKit
|
| 301 |
-
|
| 302 |
-
class MirroAPI {
|
| 303 |
-
static let shared = MirroAPI()
|
| 304 |
-
private let baseURL = "https://gk2291-mirro-app-server.hf.space"
|
| 305 |
-
|
| 306 |
-
func virtualTryOn(personImage: UIImage,
|
| 307 |
-
garmentImage: UIImage,
|
| 308 |
-
completion: @escaping (Result<UIImage, Error>) -> Void) {
|
| 309 |
-
|
| 310 |
-
guard let url = URL(string: "\\(baseURL)/api/predict") else {
|
| 311 |
-
completion(.failure(NSError(domain: "Invalid URL", code: -1)))
|
| 312 |
-
return
|
| 313 |
-
}
|
| 314 |
-
|
| 315 |
-
var request = URLRequest(url: url)
|
| 316 |
-
request.httpMethod = "POST"
|
| 317 |
-
request.setValue("application/json", forHTTPHeaderField: "Content-Type")
|
| 318 |
-
request.timeoutInterval = 120 // 2 minutes timeout
|
| 319 |
-
|
| 320 |
-
// Convert images to base64
|
| 321 |
-
guard let personData = personImage.jpegData(compressionQuality: 0.85),
|
| 322 |
-
let garmentData = garmentImage.jpegData(compressionQuality: 0.85) else {
|
| 323 |
-
completion(.failure(NSError(domain: "Image conversion failed", code: -1)))
|
| 324 |
-
return
|
| 325 |
-
}
|
| 326 |
-
|
| 327 |
-
let personB64 = "data:image/jpeg;base64,\\(personData.base64EncodedString())"
|
| 328 |
-
let garmentB64 = "data:image/jpeg;base64,\\(garmentData.base64EncodedString())"
|
| 329 |
-
|
| 330 |
-
let payload: [String: Any] = [
|
| 331 |
-
"data": [personB64, garmentB64]
|
| 332 |
-
]
|
| 333 |
-
|
| 334 |
-
request.httpBody = try? JSONSerialization.data(withJSONObject: payload)
|
| 335 |
-
|
| 336 |
-
URLSession.shared.dataTask(with: request) { data, response, error in
|
| 337 |
-
if let error = error {
|
| 338 |
-
completion(.failure(error))
|
| 339 |
-
return
|
| 340 |
-
}
|
| 341 |
-
|
| 342 |
-
guard let data = data,
|
| 343 |
-
let json = try? JSONSerialization.jsonObject(with: data) as? [String: Any],
|
| 344 |
-
let dataArray = json["data"] as? [String],
|
| 345 |
-
let imageBase64 = dataArray.first else {
|
| 346 |
-
completion(.failure(NSError(domain: "Parse error", code: -1)))
|
| 347 |
-
return
|
| 348 |
-
}
|
| 349 |
-
|
| 350 |
-
// Extract base64 string
|
| 351 |
-
let base64String = imageBase64.components(separatedBy: ",").last ?? ""
|
| 352 |
-
|
| 353 |
-
guard let imageData = Data(base64Encoded: base64String),
|
| 354 |
-
let image = UIImage(data: imageData) else {
|
| 355 |
-
completion(.failure(NSError(domain: "Image decode error", code: -1)))
|
| 356 |
-
return
|
| 357 |
-
}
|
| 358 |
-
|
| 359 |
-
completion(.success(image))
|
| 360 |
-
}.resume()
|
| 361 |
-
}
|
| 362 |
-
}
|
| 363 |
-
|
| 364 |
-
// Usage Example
|
| 365 |
-
MirroAPI.shared.virtualTryOn(
|
| 366 |
-
personImage: selectedPersonImage,
|
| 367 |
-
garmentImage: selectedGarmentImage
|
| 368 |
-
) { result in
|
| 369 |
-
DispatchQueue.main.async {
|
| 370 |
-
switch result {
|
| 371 |
-
case .success(let tryOnImage):
|
| 372 |
-
self.resultImageView.image = tryOnImage
|
| 373 |
-
print("✅ Try-on successful!")
|
| 374 |
-
case .failure(let error):
|
| 375 |
-
self.showError(error.localizedDescription)
|
| 376 |
-
print("❌ Error: \\(error)")
|
| 377 |
-
}
|
| 378 |
-
}
|
| 379 |
-
}
|
| 380 |
-
```
|
| 381 |
-
|
| 382 |
-
### SwiftUI Example
|
| 383 |
-
```swift
|
| 384 |
-
import SwiftUI
|
| 385 |
-
|
| 386 |
-
struct TryOnView: View {
|
| 387 |
-
@State private var personImage: UIImage?
|
| 388 |
-
@State private var garmentImage: UIImage?
|
| 389 |
-
@State private var resultImage: UIImage?
|
| 390 |
-
@State private var isLoading = false
|
| 391 |
-
|
| 392 |
-
var body: some View {
|
| 393 |
-
VStack {
|
| 394 |
-
HStack {
|
| 395 |
-
ImagePicker(image: $personImage, title: "Person")
|
| 396 |
-
ImagePicker(image: $garmentImage, title: "Garment")
|
| 397 |
-
}
|
| 398 |
-
|
| 399 |
-
Button("Try On") {
|
| 400 |
-
guard let person = personImage,
|
| 401 |
-
let garment = garmentImage else { return }
|
| 402 |
-
|
| 403 |
-
isLoading = true
|
| 404 |
-
MirroAPI.shared.virtualTryOn(
|
| 405 |
-
personImage: person,
|
| 406 |
-
garmentImage: garment
|
| 407 |
-
) { result in
|
| 408 |
-
isLoading = false
|
| 409 |
-
if case .success(let image) = result {
|
| 410 |
-
resultImage = image
|
| 411 |
-
}
|
| 412 |
-
}
|
| 413 |
-
}
|
| 414 |
-
.disabled(isLoading || personImage == nil || garmentImage == nil)
|
| 415 |
-
|
| 416 |
-
if isLoading {
|
| 417 |
-
ProgressView("Generating try-on...")
|
| 418 |
-
} else if let result = resultImage {
|
| 419 |
-
Image(uiImage: result)
|
| 420 |
-
.resizable()
|
| 421 |
-
.scaledToFit()
|
| 422 |
-
}
|
| 423 |
-
}
|
| 424 |
-
}
|
| 425 |
-
}
|
| 426 |
-
```
|
| 427 |
-
""")
|
| 428 |
-
|
| 429 |
-
# Event Handler
|
| 430 |
-
submit_btn.click(
|
| 431 |
-
fn=virtual_tryon,
|
| 432 |
-
inputs=[person_input, garment_input],
|
| 433 |
-
outputs=output_image,
|
| 434 |
-
api_name="predict"
|
| 435 |
-
)
|
| 436 |
-
|
| 437 |
-
# Footer
|
| 438 |
-
gr.Markdown("""
|
| 439 |
-
---
|
| 440 |
-
<div style="text-align: center; color: #666; padding: 20px;">
|
| 441 |
-
<p>⚡ Powered by HuggingFace Zero GPU | 🎨 AI Image Processing | 🚀 Optimized for Mobile Apps</p>
|
| 442 |
-
<p style="font-size: 0.9em;">Built with ❤️ for Mirro iOS App</p>
|
| 443 |
-
</div>
|
| 444 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
|
| 446 |
-
# Launch
|
| 447 |
if __name__ == "__main__":
|
| 448 |
-
demo.queue(max_size=20
|
| 449 |
-
demo.launch(
|
| 450 |
-
server_name="0.0.0.0",
|
| 451 |
-
server_port=7860,
|
| 452 |
-
share=False,
|
| 453 |
-
show_error=True
|
| 454 |
-
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
+
from PIL import Image, ImageEnhance
|
| 4 |
import numpy as np
|
| 5 |
import logging
|
| 6 |
import cv2
|
| 7 |
from rembg import remove
|
|
|
|
| 8 |
|
| 9 |
# Setup logging
|
| 10 |
logging.basicConfig(level=logging.INFO)
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
|
| 13 |
+
logger.info("🚀 Mirro Virtual Try-On Server Starting...")
|
| 14 |
|
| 15 |
def create_clothing_mask(image):
|
| 16 |
"""Create mask for upper body clothing area"""
|
| 17 |
width, height = image.size
|
| 18 |
mask = np.zeros((height, width), dtype=np.uint8)
|
| 19 |
|
| 20 |
+
# Upper body region
|
| 21 |
y_start = int(height * 0.15)
|
| 22 |
y_end = int(height * 0.70)
|
| 23 |
x_start = int(width * 0.20)
|
| 24 |
x_end = int(width * 0.80)
|
| 25 |
|
| 26 |
+
# Elliptical mask
|
| 27 |
center_x = (x_start + x_end) // 2
|
| 28 |
center_y = (y_start + y_end) // 2
|
| 29 |
radius_x = (x_end - x_start) // 2
|
|
|
|
| 40 |
|
| 41 |
def enhance_image(image):
|
| 42 |
"""Enhance image quality"""
|
|
|
|
| 43 |
enhancer = ImageEnhance.Sharpness(image)
|
| 44 |
image = enhancer.enhance(1.3)
|
| 45 |
|
|
|
|
| 46 |
enhancer = ImageEnhance.Contrast(image)
|
| 47 |
image = enhancer.enhance(1.1)
|
| 48 |
|
|
|
|
| 49 |
enhancer = ImageEnhance.Color(image)
|
| 50 |
image = enhancer.enhance(1.1)
|
| 51 |
|
| 52 |
return image
|
| 53 |
|
| 54 |
def remove_garment_background(garment_img):
|
| 55 |
+
"""Remove background from garment"""
|
| 56 |
try:
|
| 57 |
logger.info("Removing garment background...")
|
| 58 |
output = remove(garment_img)
|
|
|
|
| 62 |
return garment_img
|
| 63 |
|
| 64 |
def blend_images(person_img, garment_img, mask):
|
| 65 |
+
"""Blend garment onto person"""
|
|
|
|
| 66 |
person_array = np.array(person_img).astype(float)
|
| 67 |
garment_array = np.array(garment_img).astype(float)
|
| 68 |
mask_array = np.array(mask).astype(float) / 255.0
|
| 69 |
|
|
|
|
| 70 |
mask_3ch = np.stack([mask_array] * 3, axis=2)
|
| 71 |
|
|
|
|
| 72 |
blended = (garment_array * mask_3ch + person_array * (1 - mask_3ch))
|
| 73 |
|
| 74 |
return Image.fromarray(blended.astype(np.uint8))
|
|
|
|
| 79 |
garment_array = np.array(garment_img)
|
| 80 |
mask_array = np.array(mask) / 255.0
|
| 81 |
|
|
|
|
| 82 |
person_sample = person_array * (1 - mask_array[:, :, np.newaxis])
|
| 83 |
person_mean = np.mean(person_sample[person_sample > 0])
|
| 84 |
|
|
|
|
| 85 |
garment_mean = np.mean(garment_array)
|
| 86 |
|
|
|
|
| 87 |
if garment_mean > 0:
|
| 88 |
adjustment = person_mean / garment_mean
|
| 89 |
garment_adjusted = np.clip(garment_array * adjustment, 0, 255).astype(np.uint8)
|
|
|
|
| 93 |
|
| 94 |
@spaces.GPU(duration=60)
|
| 95 |
def virtual_tryon(person_image, garment_image, progress=gr.Progress()):
|
| 96 |
+
"""Virtual try-on function"""
|
|
|
|
|
|
|
| 97 |
try:
|
|
|
|
| 98 |
if person_image is None:
|
| 99 |
raise gr.Error("❌ Please upload a person's photo!")
|
| 100 |
|
| 101 |
if garment_image is None:
|
| 102 |
raise gr.Error("❌ Please upload a garment photo!")
|
| 103 |
|
| 104 |
+
logger.info("🎯 Starting Virtual Try-On")
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
progress(0.1, desc="📸 Preprocessing...")
|
|
|
|
| 107 |
person_img = person_image.convert("RGB")
|
| 108 |
garment_img = garment_image.convert("RGB")
|
| 109 |
|
|
|
|
| 110 |
target_size = (512, 768)
|
| 111 |
person_img = person_img.resize(target_size, Image.Resampling.LANCZOS)
|
| 112 |
garment_img = garment_img.resize(target_size, Image.Resampling.LANCZOS)
|
| 113 |
|
|
|
|
| 114 |
progress(0.3, desc="🎨 Processing garment...")
|
| 115 |
garment_nobg = remove_garment_background(garment_img)
|
| 116 |
|
| 117 |
+
progress(0.4, desc="✨ Enhancing...")
|
|
|
|
| 118 |
garment_enhanced = enhance_image(garment_nobg)
|
| 119 |
|
| 120 |
+
progress(0.5, desc="🎯 Creating mask...")
|
|
|
|
| 121 |
mask = create_clothing_mask(person_img)
|
| 122 |
|
|
|
|
| 123 |
progress(0.6, desc="🎨 Matching colors...")
|
| 124 |
garment_matched = match_colors(person_img, garment_enhanced, mask)
|
| 125 |
|
| 126 |
+
progress(0.8, desc="✨ Blending...")
|
|
|
|
| 127 |
result = blend_images(person_img, garment_matched, mask)
|
| 128 |
|
|
|
|
| 129 |
progress(0.9, desc="🎨 Final touches...")
|
| 130 |
result = enhance_image(result)
|
| 131 |
|
| 132 |
progress(1.0, desc="✅ Complete!")
|
| 133 |
+
logger.info("✅ Try-on completed!")
|
|
|
|
| 134 |
|
| 135 |
return result
|
| 136 |
|
|
|
|
| 138 |
logger.error(f"❌ Error: {str(e)}")
|
| 139 |
import traceback
|
| 140 |
traceback.print_exc()
|
| 141 |
+
raise gr.Error(f"❌ Failed: {str(e)}")
|
| 142 |
|
| 143 |
+
# UI
|
| 144 |
+
css = """
|
| 145 |
+
#container {max-width: 1400px; margin: auto;}
|
| 146 |
+
.primary-btn {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 148 |
border: none !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
}
|
| 150 |
footer {display: none !important;}
|
| 151 |
"""
|
| 152 |
|
| 153 |
+
with gr.Blocks(css=css, title="Mirro Virtual Try-On") as demo:
|
| 154 |
+
|
| 155 |
+
gr.Markdown("""
|
| 156 |
+
# 👗 Mirro Virtual Try-On API
|
| 157 |
+
### AI-Powered Virtual Clothing Try-On
|
| 158 |
+
|
| 159 |
+
Upload person and garment photos for realistic try-on results.
|
| 160 |
+
""")
|
| 161 |
|
| 162 |
+
gr.Markdown("🟢 **Status:** Ready!")
|
| 163 |
+
|
| 164 |
+
with gr.Row():
|
| 165 |
+
with gr.Column():
|
| 166 |
+
person_input = gr.Image(
|
| 167 |
+
label="👤 Person Photo",
|
| 168 |
+
type="pil",
|
| 169 |
+
sources=["upload", "clipboard"]
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
garment_input = gr.Image(
|
| 173 |
+
label="👔 Garment Photo",
|
| 174 |
+
type="pil",
|
| 175 |
+
sources=["upload", "clipboard"]
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
with gr.Row():
|
| 179 |
+
clear_btn = gr.ClearButton([person_input, garment_input], value="Clear")
|
| 180 |
+
submit_btn = gr.Button("✨ Generate Try-On", variant="primary")
|
| 181 |
|
| 182 |
+
with gr.Column():
|
| 183 |
+
output_image = gr.Image(label="🎯 Result", type="pil")
|
| 184 |
+
|
| 185 |
+
with gr.Accordion("💡 Tips", open=False):
|
| 186 |
gr.Markdown("""
|
| 187 |
+
- Use clear, well-lit photos
|
| 188 |
+
- Person facing forward
|
| 189 |
+
- Plain backgrounds work best
|
| 190 |
+
- Processing: 10-20 seconds
|
|
|
|
| 191 |
""")
|
| 192 |
+
|
| 193 |
+
with gr.Accordion("📱 API Documentation", open=False):
|
| 194 |
+
gr.Markdown("""
|
| 195 |
+
**Endpoint:** `POST https://gk2291-mirro-app-server.hf.space/api/predict`
|
| 196 |
|
| 197 |
+
**Request:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
```json
|
| 199 |
+
{
|
| 200 |
+
"data": [
|
| 201 |
+
"data:image/jpeg;base64,<person_base64>",
|
| 202 |
+
"data:image/jpeg;base64,<garment_base64>"
|
| 203 |
+
]
|
| 204 |
+
}
|
| 205 |
```
|
| 206 |
+
|
| 207 |
+
**Response:**
|
| 208 |
```json
|
| 209 |
+
{
|
| 210 |
+
"data": ["data:image/png;base64,<result_base64>"]
|
| 211 |
+
}
|
|
|
|
| 212 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
""")
|
| 214 |
+
|
| 215 |
+
submit_btn.click(
|
| 216 |
+
fn=virtual_tryon,
|
| 217 |
+
inputs=[person_input, garment_input],
|
| 218 |
+
outputs=output_image,
|
| 219 |
+
api_name="predict"
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
gr.Markdown("""
|
| 223 |
+
---
|
| 224 |
+
<div style="text-align: center; color: #666;">
|
| 225 |
+
<p>⚡ Powered by HuggingFace Zero GPU</p>
|
| 226 |
+
</div>
|
| 227 |
+
""")
|
| 228 |
|
|
|
|
| 229 |
if __name__ == "__main__":
|
| 230 |
+
demo.queue(max_size=20)
|
| 231 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|