Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,188 +6,145 @@ import logging
|
|
| 6 |
import tempfile
|
| 7 |
import os
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
logging.basicConfig(level=logging.INFO)
|
| 10 |
logger = logging.getLogger(__name__)
|
| 11 |
|
| 12 |
vton_client = None
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
def init_client():
|
| 15 |
global vton_client
|
| 16 |
try:
|
| 17 |
-
logger.info("Connecting to IDM-VTON...")
|
| 18 |
-
|
| 19 |
-
|
|
|
|
| 20 |
return True
|
| 21 |
except Exception as e:
|
| 22 |
-
logger.error(f"
|
|
|
|
| 23 |
return False
|
| 24 |
|
|
|
|
| 25 |
model_ready = init_client()
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
@spaces.GPU(duration=180)
|
| 28 |
def virtual_tryon(person_image, garment_image, progress=gr.Progress()):
|
| 29 |
global vton_client
|
| 30 |
-
|
| 31 |
try:
|
| 32 |
if not person_image or not garment_image:
|
| 33 |
raise gr.Error("Please upload both images!")
|
| 34 |
-
|
| 35 |
if not vton_client:
|
| 36 |
if not init_client():
|
| 37 |
-
raise gr.Error("
|
| 38 |
-
|
| 39 |
-
logger.info("Starting try-on...")
|
| 40 |
-
progress(0.2, desc="Preparing...")
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
garment_img = garment_image.convert('RGB')
|
| 44 |
-
|
| 45 |
person_tmp = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
|
| 46 |
garment_tmp = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
progress(0.5, desc="Processing (60-90s)...")
|
| 55 |
-
|
| 56 |
result = vton_client.predict(
|
| 57 |
handle_file(person_tmp.name),
|
| 58 |
handle_file(garment_tmp.name),
|
| 59 |
-
"
|
| 60 |
True,
|
| 61 |
True,
|
| 62 |
30,
|
| 63 |
42,
|
| 64 |
api_name="/tryon"
|
| 65 |
)
|
| 66 |
-
|
| 67 |
-
progress(0.9, desc="
|
| 68 |
-
|
| 69 |
result_path = result[0] if isinstance(result, (tuple, list)) else result
|
| 70 |
result_image = Image.open(result_path)
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
return result_image
|
| 82 |
-
|
| 83 |
except Exception as e:
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
raise gr.Error(f"Failed: {str(e)}")
|
| 86 |
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
| 88 |
with gr.Blocks(title="Mirro Virtual Try-On", theme=gr.themes.Soft()) as demo:
|
| 89 |
-
|
| 90 |
-
gr.Markdown("# π Mirro Virtual Try-On\n### π
|
| 91 |
-
|
| 92 |
if model_ready:
|
| 93 |
-
gr.Markdown("π’ **
|
| 94 |
else:
|
| 95 |
-
gr.Markdown("π‘ **Connecting...** Try in a moment.")
|
| 96 |
-
|
| 97 |
with gr.Row():
|
| 98 |
with gr.Column():
|
| 99 |
gr.Markdown("### πΈ Upload Images")
|
| 100 |
-
person_input = gr.Image(
|
| 101 |
-
|
| 102 |
-
type="pil",
|
| 103 |
-
sources=["upload", "webcam"]
|
| 104 |
-
)
|
| 105 |
-
garment_input = gr.Image(
|
| 106 |
-
label="π Garment Photo",
|
| 107 |
-
type="pil",
|
| 108 |
-
sources=["upload", "webcam"]
|
| 109 |
-
)
|
| 110 |
btn = gr.Button("β¨ Generate Try-On", variant="primary")
|
| 111 |
-
|
| 112 |
with gr.Column():
|
| 113 |
gr.Markdown("### π― Result")
|
| 114 |
output_image = gr.Image(label="Virtual Try-On Result", type="pil")
|
| 115 |
-
|
| 116 |
with gr.Accordion("π‘ Tips for Best Results", open=False):
|
| 117 |
gr.Markdown("""
|
| 118 |
-
|
| 119 |
-
-
|
| 120 |
-
-
|
| 121 |
-
-
|
| 122 |
-
|
| 123 |
-
### Garment Photo:
|
| 124 |
-
- Clear photo of garment (flat lay or on hanger)
|
| 125 |
-
- Full garment visible
|
| 126 |
-
- Good lighting
|
| 127 |
-
|
| 128 |
-
### Processing:
|
| 129 |
-
- Takes 60-90 seconds
|
| 130 |
-
- Realistic results (not overlay)
|
| 131 |
-
- Preserves face and pose
|
| 132 |
""")
|
| 133 |
-
|
| 134 |
-
with gr.Accordion("π± iOS API Integration", open=False):
|
| 135 |
-
gr.Markdown("""
|
| 136 |
-
## REST API Endpoint
|
| 137 |
-
```
|
| 138 |
-
POST https://gk2291-mirro-app-server.hf.space/api/predict
|
| 139 |
-
```
|
| 140 |
-
|
| 141 |
-
### Request Format (JSON):
|
| 142 |
-
```json
|
| 143 |
-
{
|
| 144 |
-
"data": [
|
| 145 |
-
"data:image/jpeg;base64,<person_base64>",
|
| 146 |
-
"data:image/jpeg;base64,<garment_base64>"
|
| 147 |
-
]
|
| 148 |
-
}
|
| 149 |
-
```
|
| 150 |
-
|
| 151 |
-
### Response Format (JSON):
|
| 152 |
-
```json
|
| 153 |
-
{
|
| 154 |
-
"data": ["data:image/png;base64,<result_base64>"]
|
| 155 |
-
}
|
| 156 |
-
```
|
| 157 |
-
|
| 158 |
-
### Swift Example:
|
| 159 |
-
```swift
|
| 160 |
-
let url = URL(string: "https://gk2291-mirro-app-server.hf.space/api/predict")!
|
| 161 |
-
var request = URLRequest(url: url)
|
| 162 |
-
request.httpMethod = "POST"
|
| 163 |
-
request.setValue("application/json", forHTTPHeaderField: "Content-Type")
|
| 164 |
-
|
| 165 |
-
let payload: [String: Any] = [
|
| 166 |
-
"data": [personBase64, garmentBase64]
|
| 167 |
-
]
|
| 168 |
-
request.httpBody = try? JSONSerialization.data(withJSONObject: payload)
|
| 169 |
-
|
| 170 |
-
URLSession.shared.dataTask(with: request) { data, response, error in
|
| 171 |
-
// Handle response
|
| 172 |
-
}.resume()
|
| 173 |
-
```
|
| 174 |
-
""")
|
| 175 |
-
|
| 176 |
btn.click(
|
| 177 |
fn=virtual_tryon,
|
| 178 |
inputs=[person_input, garment_input],
|
| 179 |
outputs=output_image,
|
| 180 |
api_name="predict"
|
| 181 |
)
|
| 182 |
-
|
| 183 |
gr.Markdown("""
|
| 184 |
---
|
| 185 |
-
<div style="text-align:
|
| 186 |
-
<p>π
|
| 187 |
-
<p style="font-size:
|
| 188 |
</div>
|
| 189 |
""")
|
| 190 |
|
| 191 |
if __name__ == "__main__":
|
| 192 |
demo.queue(max_size=20)
|
| 193 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 6 |
import tempfile
|
| 7 |
import os
|
| 8 |
|
| 9 |
+
# ==========================================================
|
| 10 |
+
# Setup
|
| 11 |
+
# ==========================================================
|
| 12 |
logging.basicConfig(level=logging.INFO)
|
| 13 |
logger = logging.getLogger(__name__)
|
| 14 |
|
| 15 |
vton_client = None
|
| 16 |
|
| 17 |
+
|
| 18 |
+
# ==========================================================
|
| 19 |
+
# Init Remote Try-On Model (API Endpoint)
|
| 20 |
+
# ==========================================================
|
| 21 |
def init_client():
|
| 22 |
global vton_client
|
| 23 |
try:
|
| 24 |
+
logger.info("π Connecting to IDM-VTON API...")
|
| 25 |
+
# β
Use the maintained API Space (not model repo)
|
| 26 |
+
vton_client = Client("yisol-idm-vton-api.hf.space")
|
| 27 |
+
logger.info("β
Connected to yisol-idm-vton-api.hf.space")
|
| 28 |
return True
|
| 29 |
except Exception as e:
|
| 30 |
+
logger.error(f"β Connection failed: {e}")
|
| 31 |
+
vton_client = None
|
| 32 |
return False
|
| 33 |
|
| 34 |
+
|
| 35 |
model_ready = init_client()
|
| 36 |
|
| 37 |
+
|
| 38 |
+
# ==========================================================
|
| 39 |
+
# GPU Accelerated Try-On Function
|
| 40 |
+
# ==========================================================
|
| 41 |
@spaces.GPU(duration=180)
|
| 42 |
def virtual_tryon(person_image, garment_image, progress=gr.Progress()):
|
| 43 |
global vton_client
|
| 44 |
+
|
| 45 |
try:
|
| 46 |
if not person_image or not garment_image:
|
| 47 |
raise gr.Error("Please upload both images!")
|
| 48 |
+
|
| 49 |
if not vton_client:
|
| 50 |
if not init_client():
|
| 51 |
+
raise gr.Error("β οΈ Model API unavailable. Try again later.")
|
| 52 |
+
|
| 53 |
+
logger.info("π― Starting try-on pipeline...")
|
| 54 |
+
progress(0.2, desc="πΈ Preparing images...")
|
| 55 |
+
|
| 56 |
+
# Save temporary input files
|
|
|
|
|
|
|
| 57 |
person_tmp = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
|
| 58 |
garment_tmp = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
|
| 59 |
+
|
| 60 |
+
person_image.convert('RGB').save(person_tmp.name, 'JPEG', quality=95)
|
| 61 |
+
garment_image.convert('RGB').save(garment_tmp.name, 'JPEG', quality=95)
|
| 62 |
+
|
| 63 |
+
progress(0.5, desc="πͺ Running AI model (60-90s)...")
|
| 64 |
+
|
| 65 |
+
# Call remote API Space
|
|
|
|
|
|
|
| 66 |
result = vton_client.predict(
|
| 67 |
handle_file(person_tmp.name),
|
| 68 |
handle_file(garment_tmp.name),
|
| 69 |
+
"universal garment", # π supports saree, kurta, dress, etc.
|
| 70 |
True,
|
| 71 |
True,
|
| 72 |
30,
|
| 73 |
42,
|
| 74 |
api_name="/tryon"
|
| 75 |
)
|
| 76 |
+
|
| 77 |
+
progress(0.9, desc="π¨ Generating result...")
|
| 78 |
+
|
| 79 |
result_path = result[0] if isinstance(result, (tuple, list)) else result
|
| 80 |
result_image = Image.open(result_path)
|
| 81 |
+
|
| 82 |
+
# Cleanup temp files
|
| 83 |
+
for tmp in [person_tmp.name, garment_tmp.name]:
|
| 84 |
+
try:
|
| 85 |
+
os.unlink(tmp)
|
| 86 |
+
except:
|
| 87 |
+
pass
|
| 88 |
+
|
| 89 |
+
progress(1.0, desc="β
Done!")
|
| 90 |
+
logger.info("β
Try-on complete!")
|
| 91 |
return result_image
|
| 92 |
+
|
| 93 |
except Exception as e:
|
| 94 |
+
if "ZeroGPU" in str(e):
|
| 95 |
+
raise gr.Error(
|
| 96 |
+
"β οΈ GPU quota exceeded. Log in to Hugging Face or retry later."
|
| 97 |
+
)
|
| 98 |
+
logger.error(f"β Error: {e}")
|
| 99 |
raise gr.Error(f"Failed: {str(e)}")
|
| 100 |
|
| 101 |
+
|
| 102 |
+
# ==========================================================
|
| 103 |
+
# Gradio Interface
|
| 104 |
+
# ==========================================================
|
| 105 |
with gr.Blocks(title="Mirro Virtual Try-On", theme=gr.themes.Soft()) as demo:
|
| 106 |
+
|
| 107 |
+
gr.Markdown("# π Mirro Virtual Try-On\n### π AI-Powered Outfit Fitting (All Garments)")
|
| 108 |
+
|
| 109 |
if model_ready:
|
| 110 |
+
gr.Markdown("π’ **Model ready!** Upload your photos below.")
|
| 111 |
else:
|
| 112 |
+
gr.Markdown("π‘ **Connecting...** Try again in a moment.")
|
| 113 |
+
|
| 114 |
with gr.Row():
|
| 115 |
with gr.Column():
|
| 116 |
gr.Markdown("### πΈ Upload Images")
|
| 117 |
+
person_input = gr.Image(label="π€ Person Photo", type="pil", sources=["upload", "webcam"])
|
| 118 |
+
garment_input = gr.Image(label="π Garment Photo", type="pil", sources=["upload", "webcam"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
btn = gr.Button("β¨ Generate Try-On", variant="primary")
|
| 120 |
+
|
| 121 |
with gr.Column():
|
| 122 |
gr.Markdown("### π― Result")
|
| 123 |
output_image = gr.Image(label="Virtual Try-On Result", type="pil")
|
| 124 |
+
|
| 125 |
with gr.Accordion("π‘ Tips for Best Results", open=False):
|
| 126 |
gr.Markdown("""
|
| 127 |
+
- Clear, front-facing full-body person photo
|
| 128 |
+
- Plain background recommended
|
| 129 |
+
- Any garment type: saree, kurta, dress, jeans, jacket, etc.
|
| 130 |
+
- Processing takes ~60-90 seconds on ZeroGPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
""")
|
| 132 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
btn.click(
|
| 134 |
fn=virtual_tryon,
|
| 135 |
inputs=[person_input, garment_input],
|
| 136 |
outputs=output_image,
|
| 137 |
api_name="predict"
|
| 138 |
)
|
| 139 |
+
|
| 140 |
gr.Markdown("""
|
| 141 |
---
|
| 142 |
+
<div style="text-align:center; color:#666; padding:15px;">
|
| 143 |
+
<p>π Powered by Hugging Face ZeroGPU + IDM-VTON API</p>
|
| 144 |
+
<p style="font-size:0.9em;">Supports all garment categories β production ready for iOS integration</p>
|
| 145 |
</div>
|
| 146 |
""")
|
| 147 |
|
| 148 |
if __name__ == "__main__":
|
| 149 |
demo.queue(max_size=20)
|
| 150 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|