Spaces:
Paused
Paused
Commit
·
471bf0d
1
Parent(s):
c956e19
fix color visual
Browse files- app.py +5 -85
- gradio_util.py +297 -0
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
import os
|
| 3 |
import cv2
|
| 4 |
import torch
|
|
@@ -6,6 +5,8 @@ import numpy as np
|
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
|
|
|
|
|
|
|
| 9 |
import trimesh
|
| 10 |
import sys
|
| 11 |
import os
|
|
@@ -18,9 +19,7 @@ from vggsfm_code.hf_demo import demo_fn
|
|
| 18 |
from omegaconf import DictConfig, OmegaConf
|
| 19 |
from viz_utils.viz_fn import add_camera, apply_density_filter_np
|
| 20 |
import glob
|
| 21 |
-
#
|
| 22 |
from scipy.spatial.transform import Rotation
|
| 23 |
-
# import PIL
|
| 24 |
import gc
|
| 25 |
import open3d as o3d
|
| 26 |
import time
|
|
@@ -34,8 +33,6 @@ def vggsfm_demo(
|
|
| 34 |
query_frame_num,
|
| 35 |
max_query_pts=4096,
|
| 36 |
):
|
| 37 |
-
|
| 38 |
-
|
| 39 |
start_time = time.time()
|
| 40 |
gc.collect()
|
| 41 |
torch.cuda.empty_cache()
|
|
@@ -116,7 +113,6 @@ def vggsfm_demo(
|
|
| 116 |
# except:
|
| 117 |
# return None, "Something seems to be incorrect. Please verify that your inputs are formatted correctly. If the issue persists, kindly create a GitHub issue for further assistance."
|
| 118 |
|
| 119 |
-
print(predictions.keys())
|
| 120 |
glbscene = vggsfm_predictions_to_glb(predictions)
|
| 121 |
|
| 122 |
glbfile = target_dir + "/glbscene.glb"
|
|
@@ -133,89 +129,13 @@ def vggsfm_demo(
|
|
| 133 |
end_time = time.time()
|
| 134 |
execution_time = end_time - start_time
|
| 135 |
print(f"Execution time: {execution_time} seconds")
|
| 136 |
-
|
| 137 |
-
# recon_num
|
| 138 |
-
return glbfile, f"Reconstruction complete ({recon_num} frames)"
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
def vggsfm_predictions_to_glb(predictions, sphere=False):
|
| 144 |
-
# del predictions['reconstruction']
|
| 145 |
-
# torch.save(predictions, "predictions_scene2.pth")
|
| 146 |
-
# learned from https://github.com/naver/dust3r/blob/main/dust3r/viz.py
|
| 147 |
-
points3D = predictions["points3D"].cpu().numpy()
|
| 148 |
-
points3D_rgb = predictions["points3D_rgb"].cpu().numpy()
|
| 149 |
-
points3D_rgb = (points3D_rgb*255).astype(np.uint8)
|
| 150 |
-
|
| 151 |
-
extrinsics_opencv = predictions["extrinsics_opencv"].cpu().numpy()
|
| 152 |
-
intrinsics_opencv = predictions["intrinsics_opencv"].cpu().numpy()
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
raw_image_paths = predictions["raw_image_paths"]
|
| 156 |
-
images = predictions["images"].permute(0,2,3,1).cpu().numpy()
|
| 157 |
-
images = (images*255).astype(np.uint8)
|
| 158 |
|
| 159 |
-
glbscene = trimesh.Scene()
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
pcd.colors = o3d.utility.Vector3dVector(points3D_rgb)
|
| 165 |
-
|
| 166 |
-
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=1.0)
|
| 167 |
-
filtered_pcd = pcd.select_by_index(ind)
|
| 168 |
|
| 169 |
-
print(f"Filter out {len(points3D) - len(filtered_pcd.points)} 3D points")
|
| 170 |
-
points3D = np.asarray(filtered_pcd.points)
|
| 171 |
-
points3D_rgb = np.asarray(filtered_pcd.colors)
|
| 172 |
|
| 173 |
-
|
| 174 |
-
if sphere:
|
| 175 |
-
# TOO SLOW
|
| 176 |
-
print("testing sphere")
|
| 177 |
-
# point_size = 0.02
|
| 178 |
-
else:
|
| 179 |
-
point_cloud = trimesh.PointCloud(points3D, colors=points3D_rgb)
|
| 180 |
-
glbscene.add_geometry(point_cloud)
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
camera_edge_colors = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (255, 204, 0), (0, 204, 204),
|
| 184 |
-
(128, 255, 255), (255, 128, 255), (255, 255, 128), (0, 0, 0), (128, 128, 128)]
|
| 185 |
-
|
| 186 |
-
frame_num = len(extrinsics_opencv)
|
| 187 |
-
extrinsics_opencv_4x4 = np.zeros((frame_num, 4, 4))
|
| 188 |
-
extrinsics_opencv_4x4[:, :3, :4] = extrinsics_opencv
|
| 189 |
-
extrinsics_opencv_4x4[:, 3, 3] = 1
|
| 190 |
-
|
| 191 |
-
for idx in range(frame_num):
|
| 192 |
-
cam_from_world = extrinsics_opencv_4x4[idx]
|
| 193 |
-
cam_to_world = np.linalg.inv(cam_from_world)
|
| 194 |
-
cur_cam_color = camera_edge_colors[idx % len(camera_edge_colors)]
|
| 195 |
-
cur_focal = intrinsics_opencv[idx, 0, 0]
|
| 196 |
-
|
| 197 |
-
add_camera(glbscene, cam_to_world, cur_cam_color, image=None, imsize=(1024,1024),
|
| 198 |
-
focal=None,screen_width=0.35)
|
| 199 |
-
|
| 200 |
-
opengl_mat = np.array([[1, 0, 0, 0],
|
| 201 |
-
[0, -1, 0, 0],
|
| 202 |
-
[0, 0, -1, 0],
|
| 203 |
-
[0, 0, 0, 1]])
|
| 204 |
-
|
| 205 |
-
rot = np.eye(4)
|
| 206 |
-
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
|
| 207 |
-
glbscene.apply_transform(np.linalg.inv(np.linalg.inv(extrinsics_opencv_4x4[0]) @ opengl_mat @ rot))
|
| 208 |
-
|
| 209 |
-
# Calculate the bounding box center and apply the translation
|
| 210 |
-
# bounding_box = glbscene.bounds
|
| 211 |
-
# center = (bounding_box[0] + bounding_box[1]) / 2
|
| 212 |
-
# translation = np.eye(4)
|
| 213 |
-
# translation[:3, 3] = -center
|
| 214 |
-
|
| 215 |
-
# glbscene.apply_transform(translation)
|
| 216 |
-
# glbfile = "glbscene.glb"
|
| 217 |
-
# glbscene.export(file_obj=glbfile)
|
| 218 |
-
return glbscene
|
| 219 |
|
| 220 |
|
| 221 |
statue_video = "vggsfm_code/examples/videos/statue_video.mp4"
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import cv2
|
| 3 |
import torch
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
import spaces
|
| 7 |
|
| 8 |
+
|
| 9 |
+
from gradio_util import vggsfm_predictions_to_glb
|
| 10 |
import trimesh
|
| 11 |
import sys
|
| 12 |
import os
|
|
|
|
| 19 |
from omegaconf import DictConfig, OmegaConf
|
| 20 |
from viz_utils.viz_fn import add_camera, apply_density_filter_np
|
| 21 |
import glob
|
|
|
|
| 22 |
from scipy.spatial.transform import Rotation
|
|
|
|
| 23 |
import gc
|
| 24 |
import open3d as o3d
|
| 25 |
import time
|
|
|
|
| 33 |
query_frame_num,
|
| 34 |
max_query_pts=4096,
|
| 35 |
):
|
|
|
|
|
|
|
| 36 |
start_time = time.time()
|
| 37 |
gc.collect()
|
| 38 |
torch.cuda.empty_cache()
|
|
|
|
| 113 |
# except:
|
| 114 |
# return None, "Something seems to be incorrect. Please verify that your inputs are formatted correctly. If the issue persists, kindly create a GitHub issue for further assistance."
|
| 115 |
|
|
|
|
| 116 |
glbscene = vggsfm_predictions_to_glb(predictions)
|
| 117 |
|
| 118 |
glbfile = target_dir + "/glbscene.glb"
|
|
|
|
| 129 |
end_time = time.time()
|
| 130 |
execution_time = end_time - start_time
|
| 131 |
print(f"Execution time: {execution_time} seconds")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
|
|
|
| 133 |
|
| 134 |
+
# glbscene.geometry['geometry_0'].colors.max()
|
| 135 |
+
# recon_num
|
| 136 |
+
return glbfile, f"Reconstruction complete ({recon_num} frames)"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
|
|
|
|
|
|
|
|
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
|
| 141 |
statue_video = "vggsfm_code/examples/videos/statue_video.mp4"
|
gradio_util.py
ADDED
|
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
try:
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import trimesh
|
| 5 |
+
import open3d as o3d
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import numpy as np
|
| 9 |
+
import matplotlib
|
| 10 |
+
from scipy.spatial.transform import Rotation
|
| 11 |
+
|
| 12 |
+
print("Successfully imported the packages for Gradio visualization")
|
| 13 |
+
except:
|
| 14 |
+
print(
|
| 15 |
+
f"Failed to import packages for Gradio visualization. Please disable gradio visualization"
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def visualize_by_gradio(glbfile):
|
| 20 |
+
"""
|
| 21 |
+
Set up and launch a Gradio interface to visualize a GLB file.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
glbfile (str): Path to the GLB file to be visualized.
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
def load_glb_file(glb_path):
|
| 28 |
+
# Check if the file exists and return the path or error message
|
| 29 |
+
if os.path.exists(glb_path):
|
| 30 |
+
return glb_path, "3D Model Loaded Successfully"
|
| 31 |
+
else:
|
| 32 |
+
return None, "File not found"
|
| 33 |
+
|
| 34 |
+
# Load the GLB file initially to check if it's valid
|
| 35 |
+
initial_model, log_message = load_glb_file(glbfile)
|
| 36 |
+
|
| 37 |
+
# Create the Gradio interface
|
| 38 |
+
with gr.Blocks() as demo:
|
| 39 |
+
gr.Markdown("# GLB File Viewer")
|
| 40 |
+
|
| 41 |
+
# 3D Model viewer component
|
| 42 |
+
model_viewer = gr.Model3D(
|
| 43 |
+
label="3D Model Viewer", height=600, value=initial_model
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Textbox for log output
|
| 47 |
+
log_output = gr.Textbox(label="Log", lines=2, value=log_message)
|
| 48 |
+
|
| 49 |
+
# Launch the Gradio interface
|
| 50 |
+
demo.launch(share=True)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def vggsfm_predictions_to_glb(predictions) -> trimesh.Scene:
|
| 54 |
+
"""
|
| 55 |
+
Converts VGG SFM predictions to a 3D scene represented as a GLB.
|
| 56 |
+
|
| 57 |
+
Args:
|
| 58 |
+
predictions (dict): A dictionary containing model predictions.
|
| 59 |
+
|
| 60 |
+
Returns:
|
| 61 |
+
trimesh.Scene: A 3D scene object.
|
| 62 |
+
"""
|
| 63 |
+
# Convert predictions to numpy arrays
|
| 64 |
+
vertices_3d = predictions["points3D"].cpu().numpy()
|
| 65 |
+
colors_rgb = (predictions["points3D_rgb"].cpu().numpy() * 255).astype(
|
| 66 |
+
np.uint8
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
if True:
|
| 71 |
+
pcd = o3d.geometry.PointCloud()
|
| 72 |
+
pcd.points = o3d.utility.Vector3dVector(vertices_3d)
|
| 73 |
+
pcd.colors = o3d.utility.Vector3dVector(colors_rgb)
|
| 74 |
+
|
| 75 |
+
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=1.0)
|
| 76 |
+
filtered_pcd = pcd.select_by_index(ind)
|
| 77 |
+
|
| 78 |
+
print(f"Filter out {len(vertices_3d) - len(filtered_pcd.points)} 3D points")
|
| 79 |
+
vertices_3d = np.asarray(filtered_pcd.points)
|
| 80 |
+
colors_rgb = np.asarray(filtered_pcd.colors).astype(np.uint8)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
camera_matrices = predictions["extrinsics_opencv"].cpu().numpy()
|
| 85 |
+
|
| 86 |
+
# Calculate the 5th and 95th percentiles along each axis
|
| 87 |
+
lower_percentile = np.percentile(vertices_3d, 5, axis=0)
|
| 88 |
+
upper_percentile = np.percentile(vertices_3d, 95, axis=0)
|
| 89 |
+
|
| 90 |
+
# Calculate the diagonal length of the percentile bounding box
|
| 91 |
+
scene_scale = np.linalg.norm(upper_percentile - lower_percentile)
|
| 92 |
+
|
| 93 |
+
colormap = matplotlib.colormaps.get_cmap("gist_rainbow")
|
| 94 |
+
|
| 95 |
+
# Initialize a 3D scene
|
| 96 |
+
scene_3d = trimesh.Scene()
|
| 97 |
+
|
| 98 |
+
# Add point cloud data to the scene
|
| 99 |
+
point_cloud_data = trimesh.PointCloud(
|
| 100 |
+
vertices=vertices_3d, colors=colors_rgb
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
scene_3d.add_geometry(point_cloud_data)
|
| 104 |
+
|
| 105 |
+
# Prepare 4x4 matrices for camera extrinsics
|
| 106 |
+
num_cameras = len(camera_matrices)
|
| 107 |
+
extrinsics_matrices = np.zeros((num_cameras, 4, 4))
|
| 108 |
+
extrinsics_matrices[:, :3, :4] = camera_matrices
|
| 109 |
+
extrinsics_matrices[:, 3, 3] = 1
|
| 110 |
+
|
| 111 |
+
# Add camera models to the scene
|
| 112 |
+
for i in range(num_cameras):
|
| 113 |
+
world_to_camera = extrinsics_matrices[i]
|
| 114 |
+
camera_to_world = np.linalg.inv(world_to_camera)
|
| 115 |
+
rgba_color = colormap(i / num_cameras)
|
| 116 |
+
current_color = tuple(int(255 * x) for x in rgba_color[:3])
|
| 117 |
+
|
| 118 |
+
integrate_camera_into_scene(
|
| 119 |
+
scene_3d, camera_to_world, current_color, scene_scale
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Align scene to the observation of the first camera
|
| 123 |
+
scene_3d = apply_scene_alignment(scene_3d, extrinsics_matrices)
|
| 124 |
+
|
| 125 |
+
return scene_3d
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def apply_scene_alignment(
|
| 129 |
+
scene_3d: trimesh.Scene, extrinsics_matrices: np.ndarray
|
| 130 |
+
) -> trimesh.Scene:
|
| 131 |
+
"""
|
| 132 |
+
Aligns the 3D scene based on the extrinsics of the first camera.
|
| 133 |
+
|
| 134 |
+
Args:
|
| 135 |
+
scene_3d (trimesh.Scene): The 3D scene to be aligned.
|
| 136 |
+
extrinsics_matrices (np.ndarray): Camera extrinsic matrices.
|
| 137 |
+
|
| 138 |
+
Returns:
|
| 139 |
+
trimesh.Scene: Aligned 3D scene.
|
| 140 |
+
"""
|
| 141 |
+
# Set transformations for scene alignment
|
| 142 |
+
opengl_conversion_matrix = get_opengl_conversion_matrix()
|
| 143 |
+
|
| 144 |
+
# Rotation matrix for alignment (180 degrees around the y-axis)
|
| 145 |
+
align_rotation = np.eye(4)
|
| 146 |
+
align_rotation[:3, :3] = Rotation.from_euler(
|
| 147 |
+
"y", 180, degrees=True
|
| 148 |
+
).as_matrix()
|
| 149 |
+
|
| 150 |
+
# Apply transformation
|
| 151 |
+
initial_transformation = (
|
| 152 |
+
np.linalg.inv(extrinsics_matrices[0])
|
| 153 |
+
@ opengl_conversion_matrix
|
| 154 |
+
@ align_rotation
|
| 155 |
+
)
|
| 156 |
+
scene_3d.apply_transform(initial_transformation)
|
| 157 |
+
return scene_3d
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def integrate_camera_into_scene(
|
| 161 |
+
scene: trimesh.Scene,
|
| 162 |
+
transform: np.ndarray,
|
| 163 |
+
face_colors: tuple,
|
| 164 |
+
scene_scale: float,
|
| 165 |
+
):
|
| 166 |
+
"""
|
| 167 |
+
Integrates a fake camera mesh into the 3D scene.
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
scene (trimesh.Scene): The 3D scene to add the camera model.
|
| 171 |
+
transform (np.ndarray): Transformation matrix for camera positioning.
|
| 172 |
+
face_colors (tuple): Color of the camera face.
|
| 173 |
+
scene_scale (float): Scale of the scene.
|
| 174 |
+
"""
|
| 175 |
+
|
| 176 |
+
cam_width = scene_scale * 0.05
|
| 177 |
+
cam_height = scene_scale * 0.1
|
| 178 |
+
|
| 179 |
+
# Create cone shape for camera
|
| 180 |
+
rot_45_degree = np.eye(4)
|
| 181 |
+
rot_45_degree[:3, :3] = Rotation.from_euler(
|
| 182 |
+
"z", 45, degrees=True
|
| 183 |
+
).as_matrix()
|
| 184 |
+
rot_45_degree[2, 3] = -cam_height
|
| 185 |
+
|
| 186 |
+
opengl_transform = get_opengl_conversion_matrix()
|
| 187 |
+
# Combine transformations
|
| 188 |
+
complete_transform = transform @ opengl_transform @ rot_45_degree
|
| 189 |
+
camera_cone_shape = trimesh.creation.cone(cam_width, cam_height, sections=4)
|
| 190 |
+
|
| 191 |
+
# Generate mesh for the camera
|
| 192 |
+
slight_rotation = np.eye(4)
|
| 193 |
+
slight_rotation[:3, :3] = Rotation.from_euler(
|
| 194 |
+
"z", 2, degrees=True
|
| 195 |
+
).as_matrix()
|
| 196 |
+
|
| 197 |
+
vertices_combined = np.concatenate(
|
| 198 |
+
[
|
| 199 |
+
camera_cone_shape.vertices,
|
| 200 |
+
0.95 * camera_cone_shape.vertices,
|
| 201 |
+
transform_points(slight_rotation, camera_cone_shape.vertices),
|
| 202 |
+
]
|
| 203 |
+
)
|
| 204 |
+
vertices_transformed = transform_points(
|
| 205 |
+
complete_transform, vertices_combined
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
mesh_faces = compute_camera_faces(camera_cone_shape)
|
| 209 |
+
|
| 210 |
+
# Add the camera mesh to the scene
|
| 211 |
+
camera_mesh = trimesh.Trimesh(
|
| 212 |
+
vertices=vertices_transformed, faces=mesh_faces
|
| 213 |
+
)
|
| 214 |
+
camera_mesh.visual.face_colors[:, :3] = face_colors
|
| 215 |
+
scene.add_geometry(camera_mesh)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def compute_camera_faces(cone_shape: trimesh.Trimesh) -> np.ndarray:
|
| 219 |
+
"""
|
| 220 |
+
Computes the faces for the camera mesh.
|
| 221 |
+
|
| 222 |
+
Args:
|
| 223 |
+
cone_shape (trimesh.Trimesh): The shape of the camera cone.
|
| 224 |
+
|
| 225 |
+
Returns:
|
| 226 |
+
np.ndarray: Array of faces for the camera mesh.
|
| 227 |
+
"""
|
| 228 |
+
# Create pseudo cameras
|
| 229 |
+
faces_list = []
|
| 230 |
+
num_vertices_cone = len(cone_shape.vertices)
|
| 231 |
+
|
| 232 |
+
for face in cone_shape.faces:
|
| 233 |
+
if 0 in face:
|
| 234 |
+
continue
|
| 235 |
+
v1, v2, v3 = face
|
| 236 |
+
v1_offset, v2_offset, v3_offset = face + num_vertices_cone
|
| 237 |
+
v1_offset_2, v2_offset_2, v3_offset_2 = face + 2 * num_vertices_cone
|
| 238 |
+
|
| 239 |
+
faces_list.extend(
|
| 240 |
+
[
|
| 241 |
+
(v1, v2, v2_offset),
|
| 242 |
+
(v1, v1_offset, v3),
|
| 243 |
+
(v3_offset, v2, v3),
|
| 244 |
+
(v1, v2, v2_offset_2),
|
| 245 |
+
(v1, v1_offset_2, v3),
|
| 246 |
+
(v3_offset_2, v2, v3),
|
| 247 |
+
]
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
faces_list += [(v3, v2, v1) for v1, v2, v3 in faces_list]
|
| 251 |
+
return np.array(faces_list)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def transform_points(
|
| 255 |
+
transformation: np.ndarray, points: np.ndarray, dim: int = None
|
| 256 |
+
) -> np.ndarray:
|
| 257 |
+
"""
|
| 258 |
+
Applies a 4x4 transformation to a set of points.
|
| 259 |
+
|
| 260 |
+
Args:
|
| 261 |
+
transformation (np.ndarray): Transformation matrix.
|
| 262 |
+
points (np.ndarray): Points to be transformed.
|
| 263 |
+
dim (int, optional): Dimension for reshaping the result.
|
| 264 |
+
|
| 265 |
+
Returns:
|
| 266 |
+
np.ndarray: Transformed points.
|
| 267 |
+
"""
|
| 268 |
+
points = np.asarray(points)
|
| 269 |
+
initial_shape = points.shape[:-1]
|
| 270 |
+
dim = dim or points.shape[-1]
|
| 271 |
+
|
| 272 |
+
# Apply transformation
|
| 273 |
+
transformation = transformation.swapaxes(
|
| 274 |
+
-1, -2
|
| 275 |
+
) # Transpose the transformation matrix
|
| 276 |
+
points = points @ transformation[..., :-1, :] + transformation[..., -1:, :]
|
| 277 |
+
|
| 278 |
+
# Reshape the result
|
| 279 |
+
result = points[..., :dim].reshape(*initial_shape, dim)
|
| 280 |
+
return result
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
def get_opengl_conversion_matrix() -> np.ndarray:
|
| 284 |
+
"""
|
| 285 |
+
Constructs and returns the OpenGL conversion matrix.
|
| 286 |
+
|
| 287 |
+
Returns:
|
| 288 |
+
numpy.ndarray: A 4x4 OpenGL conversion matrix.
|
| 289 |
+
"""
|
| 290 |
+
# Create an identity matrix
|
| 291 |
+
matrix = np.identity(4)
|
| 292 |
+
|
| 293 |
+
# Flip the y and z axes
|
| 294 |
+
matrix[1, 1] = -1
|
| 295 |
+
matrix[2, 2] = -1
|
| 296 |
+
|
| 297 |
+
return matrix
|