Spaces:
Running
on
Zero
Running
on
Zero
refactor gui.py
Browse files- app.py +9 -402
- gui.py +432 -0
- service/gemini_service.py +11 -0
- utils/model_utils.py +1 -1
app.py
CHANGED
|
@@ -184,6 +184,7 @@ import diffusers
|
|
| 184 |
|
| 185 |
diffusers.utils.logging.set_verbosity(40)
|
| 186 |
import warnings
|
|
|
|
| 187 |
|
| 188 |
warnings.filterwarnings(
|
| 189 |
action="ignore",
|
|
@@ -204,407 +205,12 @@ warnings.filterwarnings(
|
|
| 204 |
logger.setLevel(logging.DEBUG)
|
| 205 |
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
base_model_id="cagliostrolab/animagine-xl-3.1",
|
| 214 |
-
task_name="txt2img",
|
| 215 |
-
vae_model=None,
|
| 216 |
-
type_model_precision=torch.float16,
|
| 217 |
-
retain_task_model_in_cache=False,
|
| 218 |
-
)
|
| 219 |
-
|
| 220 |
-
def load_new_model(
|
| 221 |
-
self,
|
| 222 |
-
model_name,
|
| 223 |
-
vae_model,
|
| 224 |
-
task,
|
| 225 |
-
progress=gr.Progress(track_tqdm=True)):
|
| 226 |
-
"""
|
| 227 |
-
:param model_name:
|
| 228 |
-
:param vae_model:
|
| 229 |
-
:param task:
|
| 230 |
-
:param progress:
|
| 231 |
-
"""
|
| 232 |
-
yield f"Loading model: {model_name}"
|
| 233 |
-
|
| 234 |
-
vae_model = vae_model if vae_model != "None" else None
|
| 235 |
-
|
| 236 |
-
if model_name in model_list:
|
| 237 |
-
model_is_xl = "xl" in model_name.lower()
|
| 238 |
-
sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
|
| 239 |
-
model_type = "SDXL" if model_is_xl else "SD 1.5"
|
| 240 |
-
incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)
|
| 241 |
-
|
| 242 |
-
if incompatible_vae:
|
| 243 |
-
vae_model = None
|
| 244 |
-
|
| 245 |
-
self.model.load_pipe(
|
| 246 |
-
model_name,
|
| 247 |
-
task_name=task_stablepy[task],
|
| 248 |
-
vae_model=vae_model if vae_model != "None" else None,
|
| 249 |
-
type_model_precision=torch.float16,
|
| 250 |
-
retain_task_model_in_cache=False,
|
| 251 |
-
)
|
| 252 |
-
yield f"Model loaded: {model_name}"
|
| 253 |
-
|
| 254 |
-
@spaces.GPU
|
| 255 |
-
def generate_pipeline(
|
| 256 |
-
self,
|
| 257 |
-
prompt,
|
| 258 |
-
neg_prompt,
|
| 259 |
-
num_images,
|
| 260 |
-
steps,
|
| 261 |
-
cfg,
|
| 262 |
-
clip_skip,
|
| 263 |
-
seed,
|
| 264 |
-
lora1,
|
| 265 |
-
lora_scale1,
|
| 266 |
-
lora2,
|
| 267 |
-
lora_scale2,
|
| 268 |
-
lora3,
|
| 269 |
-
lora_scale3,
|
| 270 |
-
lora4,
|
| 271 |
-
lora_scale4,
|
| 272 |
-
lora5,
|
| 273 |
-
lora_scale5,
|
| 274 |
-
sampler,
|
| 275 |
-
img_height,
|
| 276 |
-
img_width,
|
| 277 |
-
model_name,
|
| 278 |
-
vae_model,
|
| 279 |
-
task,
|
| 280 |
-
image_control,
|
| 281 |
-
preprocessor_name,
|
| 282 |
-
preprocess_resolution,
|
| 283 |
-
image_resolution,
|
| 284 |
-
style_prompt, # list []
|
| 285 |
-
style_json_file,
|
| 286 |
-
image_mask,
|
| 287 |
-
strength,
|
| 288 |
-
low_threshold,
|
| 289 |
-
high_threshold,
|
| 290 |
-
value_threshold,
|
| 291 |
-
distance_threshold,
|
| 292 |
-
controlnet_output_scaling_in_unet,
|
| 293 |
-
controlnet_start_threshold,
|
| 294 |
-
controlnet_stop_threshold,
|
| 295 |
-
textual_inversion,
|
| 296 |
-
syntax_weights,
|
| 297 |
-
upscaler_model_path,
|
| 298 |
-
upscaler_increases_size,
|
| 299 |
-
esrgan_tile,
|
| 300 |
-
esrgan_tile_overlap,
|
| 301 |
-
hires_steps,
|
| 302 |
-
hires_denoising_strength,
|
| 303 |
-
hires_sampler,
|
| 304 |
-
hires_prompt,
|
| 305 |
-
hires_negative_prompt,
|
| 306 |
-
hires_before_adetailer,
|
| 307 |
-
hires_after_adetailer,
|
| 308 |
-
loop_generation,
|
| 309 |
-
leave_progress_bar,
|
| 310 |
-
disable_progress_bar,
|
| 311 |
-
image_previews,
|
| 312 |
-
display_images,
|
| 313 |
-
save_generated_images,
|
| 314 |
-
image_storage_location,
|
| 315 |
-
retain_compel_previous_load,
|
| 316 |
-
retain_detailfix_model_previous_load,
|
| 317 |
-
retain_hires_model_previous_load,
|
| 318 |
-
t2i_adapter_preprocessor,
|
| 319 |
-
t2i_adapter_conditioning_scale,
|
| 320 |
-
t2i_adapter_conditioning_factor,
|
| 321 |
-
xformers_memory_efficient_attention,
|
| 322 |
-
freeu,
|
| 323 |
-
generator_in_cpu,
|
| 324 |
-
adetailer_inpaint_only,
|
| 325 |
-
adetailer_verbose,
|
| 326 |
-
adetailer_sampler,
|
| 327 |
-
adetailer_active_a,
|
| 328 |
-
prompt_ad_a,
|
| 329 |
-
negative_prompt_ad_a,
|
| 330 |
-
strength_ad_a,
|
| 331 |
-
face_detector_ad_a,
|
| 332 |
-
person_detector_ad_a,
|
| 333 |
-
hand_detector_ad_a,
|
| 334 |
-
mask_dilation_a,
|
| 335 |
-
mask_blur_a,
|
| 336 |
-
mask_padding_a,
|
| 337 |
-
adetailer_active_b,
|
| 338 |
-
prompt_ad_b,
|
| 339 |
-
negative_prompt_ad_b,
|
| 340 |
-
strength_ad_b,
|
| 341 |
-
face_detector_ad_b,
|
| 342 |
-
person_detector_ad_b,
|
| 343 |
-
hand_detector_ad_b,
|
| 344 |
-
mask_dilation_b,
|
| 345 |
-
mask_blur_b,
|
| 346 |
-
mask_padding_b,
|
| 347 |
-
retain_task_cache_gui,
|
| 348 |
-
image_ip1,
|
| 349 |
-
mask_ip1,
|
| 350 |
-
model_ip1,
|
| 351 |
-
mode_ip1,
|
| 352 |
-
scale_ip1,
|
| 353 |
-
image_ip2,
|
| 354 |
-
mask_ip2,
|
| 355 |
-
model_ip2,
|
| 356 |
-
mode_ip2,
|
| 357 |
-
scale_ip2):
|
| 358 |
-
vae_model = vae_model if vae_model != "None" else None
|
| 359 |
-
loras_list: list = [lora1, lora2, lora3, lora4, lora5]
|
| 360 |
-
vae_msg: str = f"VAE: {vae_model}" if vae_model else ""
|
| 361 |
-
msg_lora: list = []
|
| 362 |
-
|
| 363 |
-
if model_name in model_list:
|
| 364 |
-
model_is_xl = "xl" in model_name.lower()
|
| 365 |
-
sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
|
| 366 |
-
model_type = "SDXL" if model_is_xl else "SD 1.5"
|
| 367 |
-
incompatible_vae = ((model_is_xl and
|
| 368 |
-
vae_model and
|
| 369 |
-
not sdxl_in_vae) or
|
| 370 |
-
(not model_is_xl and
|
| 371 |
-
sdxl_in_vae))
|
| 372 |
-
|
| 373 |
-
if incompatible_vae:
|
| 374 |
-
msg_inc_vae = (
|
| 375 |
-
f"The selected VAE is for a {'SD 1.5' if model_is_xl else 'SDXL'} model, but you"
|
| 376 |
-
f" are using a {model_type} model. The default VAE "
|
| 377 |
-
"will be used."
|
| 378 |
-
)
|
| 379 |
-
gr.Info(msg_inc_vae)
|
| 380 |
-
vae_msg = msg_inc_vae
|
| 381 |
-
vae_model = None
|
| 382 |
-
|
| 383 |
-
for la in loras_list:
|
| 384 |
-
if la is None or la == "None" or la not in lora_model_list:
|
| 385 |
-
continue
|
| 386 |
-
|
| 387 |
-
print(la)
|
| 388 |
-
lora_type = ("animetarot" in la.lower() or "Hyper-SD15-8steps".lower() in la.lower())
|
| 389 |
-
if (model_is_xl and lora_type) or (not model_is_xl and not lora_type):
|
| 390 |
-
msg_inc_lora = f"The LoRA {la} is for {'SD 1.5' if model_is_xl else 'SDXL'}, but you are using {model_type}."
|
| 391 |
-
gr.Info(msg_inc_lora)
|
| 392 |
-
msg_lora.append(msg_inc_lora)
|
| 393 |
-
|
| 394 |
-
task = task_stablepy[task]
|
| 395 |
-
|
| 396 |
-
params_ip_img: list = []
|
| 397 |
-
params_ip_msk: list = []
|
| 398 |
-
params_ip_model: list = []
|
| 399 |
-
params_ip_mode: list = []
|
| 400 |
-
params_ip_scale: list = []
|
| 401 |
-
|
| 402 |
-
all_adapters = [
|
| 403 |
-
(image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1),
|
| 404 |
-
(image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2),
|
| 405 |
-
]
|
| 406 |
-
|
| 407 |
-
for (imgip,
|
| 408 |
-
mskip,
|
| 409 |
-
modelip,
|
| 410 |
-
modeip,
|
| 411 |
-
scaleip) in all_adapters:
|
| 412 |
-
if imgip:
|
| 413 |
-
params_ip_img.append(imgip)
|
| 414 |
-
if mskip:
|
| 415 |
-
params_ip_msk.append(mskip)
|
| 416 |
-
params_ip_model.append(modelip)
|
| 417 |
-
params_ip_mode.append(modeip)
|
| 418 |
-
params_ip_scale.append(scaleip)
|
| 419 |
-
|
| 420 |
-
# First load
|
| 421 |
-
model_precision = torch.float16
|
| 422 |
-
if not self.model:
|
| 423 |
-
from modelstream import Model_Diffusers2
|
| 424 |
-
|
| 425 |
-
print("Loading model...")
|
| 426 |
-
self.model = Model_Diffusers2(
|
| 427 |
-
base_model_id=model_name,
|
| 428 |
-
task_name=task,
|
| 429 |
-
vae_model=vae_model if vae_model != "None" else None,
|
| 430 |
-
type_model_precision=model_precision,
|
| 431 |
-
retain_task_model_in_cache=retain_task_cache_gui,
|
| 432 |
-
)
|
| 433 |
-
|
| 434 |
-
if task != "txt2img" and not image_control:
|
| 435 |
-
raise ValueError(
|
| 436 |
-
"No control image found: To use this function, "
|
| 437 |
-
"you have to upload an image in 'Image ControlNet/Inpaint/Img2img'"
|
| 438 |
-
)
|
| 439 |
-
|
| 440 |
-
if task == "inpaint" and not image_mask:
|
| 441 |
-
raise ValueError("No mask image found: Specify one in 'Image Mask'")
|
| 442 |
-
|
| 443 |
-
if upscaler_model_path in [None, "Lanczos", "Nearest"]:
|
| 444 |
-
upscaler_model = upscaler_model_path
|
| 445 |
-
else:
|
| 446 |
-
directory_upscalers = 'upscalers'
|
| 447 |
-
os.makedirs(directory_upscalers, exist_ok=True)
|
| 448 |
-
|
| 449 |
-
url_upscaler = upscaler_dict_gui[upscaler_model_path]
|
| 450 |
-
|
| 451 |
-
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
|
| 452 |
-
download_things(
|
| 453 |
-
directory_upscalers,
|
| 454 |
-
url_upscaler,
|
| 455 |
-
hf_token
|
| 456 |
-
)
|
| 457 |
-
|
| 458 |
-
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"
|
| 459 |
-
|
| 460 |
-
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)
|
| 461 |
-
|
| 462 |
-
print("Config model:", model_name, vae_model, loras_list)
|
| 463 |
-
|
| 464 |
-
self.model.load_pipe(
|
| 465 |
-
model_name,
|
| 466 |
-
task_name=task,
|
| 467 |
-
vae_model=vae_model if vae_model != "None" else None,
|
| 468 |
-
type_model_precision=model_precision,
|
| 469 |
-
retain_task_model_in_cache=retain_task_cache_gui,
|
| 470 |
-
)
|
| 471 |
-
|
| 472 |
-
if textual_inversion and self.model.class_name == "StableDiffusionXLPipeline":
|
| 473 |
-
print("No Textual inversion for SDXL")
|
| 474 |
-
|
| 475 |
-
adetailer_params_A = {
|
| 476 |
-
"face_detector_ad": face_detector_ad_a,
|
| 477 |
-
"person_detector_ad": person_detector_ad_a,
|
| 478 |
-
"hand_detector_ad": hand_detector_ad_a,
|
| 479 |
-
"prompt": prompt_ad_a,
|
| 480 |
-
"negative_prompt": negative_prompt_ad_a,
|
| 481 |
-
"strength": strength_ad_a,
|
| 482 |
-
# "image_list_task" : None,
|
| 483 |
-
"mask_dilation": mask_dilation_a,
|
| 484 |
-
"mask_blur": mask_blur_a,
|
| 485 |
-
"mask_padding": mask_padding_a,
|
| 486 |
-
"inpaint_only": adetailer_inpaint_only,
|
| 487 |
-
"sampler": adetailer_sampler,
|
| 488 |
-
}
|
| 489 |
-
|
| 490 |
-
adetailer_params_B = {
|
| 491 |
-
"face_detector_ad": face_detector_ad_b,
|
| 492 |
-
"person_detector_ad": person_detector_ad_b,
|
| 493 |
-
"hand_detector_ad": hand_detector_ad_b,
|
| 494 |
-
"prompt": prompt_ad_b,
|
| 495 |
-
"negative_prompt": negative_prompt_ad_b,
|
| 496 |
-
"strength": strength_ad_b,
|
| 497 |
-
# "image_list_task" : None,
|
| 498 |
-
"mask_dilation": mask_dilation_b,
|
| 499 |
-
"mask_blur": mask_blur_b,
|
| 500 |
-
"mask_padding": mask_padding_b,
|
| 501 |
-
}
|
| 502 |
-
pipe_params = {
|
| 503 |
-
"prompt": prompt,
|
| 504 |
-
"negative_prompt": neg_prompt,
|
| 505 |
-
"img_height": img_height,
|
| 506 |
-
"img_width": img_width,
|
| 507 |
-
"num_images": num_images,
|
| 508 |
-
"num_steps": steps,
|
| 509 |
-
"guidance_scale": cfg,
|
| 510 |
-
"clip_skip": clip_skip,
|
| 511 |
-
"seed": seed,
|
| 512 |
-
"image": image_control,
|
| 513 |
-
"preprocessor_name": preprocessor_name,
|
| 514 |
-
"preprocess_resolution": preprocess_resolution,
|
| 515 |
-
"image_resolution": image_resolution,
|
| 516 |
-
"style_prompt": style_prompt if style_prompt else "",
|
| 517 |
-
"style_json_file": "",
|
| 518 |
-
"image_mask": image_mask, # only for Inpaint
|
| 519 |
-
"strength": strength, # only for Inpaint or ...
|
| 520 |
-
"low_threshold": low_threshold,
|
| 521 |
-
"high_threshold": high_threshold,
|
| 522 |
-
"value_threshold": value_threshold,
|
| 523 |
-
"distance_threshold": distance_threshold,
|
| 524 |
-
"lora_A": lora1 if lora1 != "None" else None,
|
| 525 |
-
"lora_scale_A": lora_scale1,
|
| 526 |
-
"lora_B": lora2 if lora2 != "None" else None,
|
| 527 |
-
"lora_scale_B": lora_scale2,
|
| 528 |
-
"lora_C": lora3 if lora3 != "None" else None,
|
| 529 |
-
"lora_scale_C": lora_scale3,
|
| 530 |
-
"lora_D": lora4 if lora4 != "None" else None,
|
| 531 |
-
"lora_scale_D": lora_scale4,
|
| 532 |
-
"lora_E": lora5 if lora5 != "None" else None,
|
| 533 |
-
"lora_scale_E": lora_scale5,
|
| 534 |
-
"textual_inversion": embed_list if textual_inversion and self.model.class_name != "StableDiffusionXLPipeline" else [],
|
| 535 |
-
"syntax_weights": syntax_weights, # "Classic"
|
| 536 |
-
"sampler": sampler,
|
| 537 |
-
"xformers_memory_efficient_attention": xformers_memory_efficient_attention,
|
| 538 |
-
"gui_active": True,
|
| 539 |
-
"loop_generation": loop_generation,
|
| 540 |
-
"controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet),
|
| 541 |
-
"control_guidance_start": float(controlnet_start_threshold),
|
| 542 |
-
"control_guidance_end": float(controlnet_stop_threshold),
|
| 543 |
-
"generator_in_cpu": generator_in_cpu,
|
| 544 |
-
"FreeU": freeu,
|
| 545 |
-
"adetailer_A": adetailer_active_a,
|
| 546 |
-
"adetailer_A_params": adetailer_params_A,
|
| 547 |
-
"adetailer_B": adetailer_active_b,
|
| 548 |
-
"adetailer_B_params": adetailer_params_B,
|
| 549 |
-
"leave_progress_bar": leave_progress_bar,
|
| 550 |
-
"disable_progress_bar": disable_progress_bar,
|
| 551 |
-
"image_previews": image_previews,
|
| 552 |
-
"display_images": display_images,
|
| 553 |
-
"save_generated_images": save_generated_images,
|
| 554 |
-
"image_storage_location": image_storage_location,
|
| 555 |
-
"retain_compel_previous_load": retain_compel_previous_load,
|
| 556 |
-
"retain_detailfix_model_previous_load": retain_detailfix_model_previous_load,
|
| 557 |
-
"retain_hires_model_previous_load": retain_hires_model_previous_load,
|
| 558 |
-
"t2i_adapter_preprocessor": t2i_adapter_preprocessor,
|
| 559 |
-
"t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale),
|
| 560 |
-
"t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor),
|
| 561 |
-
"upscaler_model_path": upscaler_model,
|
| 562 |
-
"upscaler_increases_size": upscaler_increases_size,
|
| 563 |
-
"esrgan_tile": esrgan_tile,
|
| 564 |
-
"esrgan_tile_overlap": esrgan_tile_overlap,
|
| 565 |
-
"hires_steps": hires_steps,
|
| 566 |
-
"hires_denoising_strength": hires_denoising_strength,
|
| 567 |
-
"hires_prompt": hires_prompt,
|
| 568 |
-
"hires_negative_prompt": hires_negative_prompt,
|
| 569 |
-
"hires_sampler": hires_sampler,
|
| 570 |
-
"hires_before_adetailer": hires_before_adetailer,
|
| 571 |
-
"hires_after_adetailer": hires_after_adetailer,
|
| 572 |
-
"ip_adapter_image": params_ip_img,
|
| 573 |
-
"ip_adapter_mask": params_ip_msk,
|
| 574 |
-
"ip_adapter_model": params_ip_model,
|
| 575 |
-
"ip_adapter_mode": params_ip_mode,
|
| 576 |
-
"ip_adapter_scale": params_ip_scale,
|
| 577 |
-
}
|
| 578 |
-
|
| 579 |
-
# print(pipe_params)
|
| 580 |
-
|
| 581 |
-
random_number = random.randint(1, 100)
|
| 582 |
-
if random_number < 25 and num_images < 3:
|
| 583 |
-
if (not upscaler_model and
|
| 584 |
-
steps < 45 and
|
| 585 |
-
task in ["txt2img", "img2img"] and
|
| 586 |
-
not adetailer_active_a and
|
| 587 |
-
not adetailer_active_b):
|
| 588 |
-
num_images *= 2
|
| 589 |
-
pipe_params["num_images"] = num_images
|
| 590 |
-
gr.Info("Num images x 2 🎉")
|
| 591 |
-
|
| 592 |
-
# Maybe fix lora issue: 'Cannot copy out of meta tensor; no data!''
|
| 593 |
-
self.model.pipe.to("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 594 |
-
|
| 595 |
-
info_state = f"PROCESSING"
|
| 596 |
-
for img, seed, data in self.model(**pipe_params):
|
| 597 |
-
info_state += "."
|
| 598 |
-
if data:
|
| 599 |
-
info_state = f"COMPLETED. Seeds: {str(seed)}"
|
| 600 |
-
if vae_msg:
|
| 601 |
-
info_state = info_state + "<br>" + vae_msg
|
| 602 |
-
if msg_lora:
|
| 603 |
-
info_state = info_state + "<br>" + "<br>".join(msg_lora)
|
| 604 |
-
yield img, info_state
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
sd_gen = GuiSD()
|
| 608 |
|
| 609 |
with open("app.css", "r") as f:
|
| 610 |
CSS: str = f.read()
|
|
@@ -649,7 +255,7 @@ with gr.Blocks(css=CSS) as app:
|
|
| 649 |
model_name_gui = gr.Dropdown(
|
| 650 |
label="Model",
|
| 651 |
choices=model_list,
|
| 652 |
-
value=
|
| 653 |
allow_custom_value=True
|
| 654 |
)
|
| 655 |
prompt_gui = gr.Textbox(
|
|
@@ -1104,6 +710,7 @@ with gr.Blocks(css=CSS) as app:
|
|
| 1104 |
value=choices_task[0]
|
| 1105 |
)
|
| 1106 |
|
|
|
|
| 1107 |
task_gui.change(
|
| 1108 |
change_preprocessor_choices,
|
| 1109 |
[task_gui],
|
|
|
|
| 184 |
|
| 185 |
diffusers.utils.logging.set_verbosity(40)
|
| 186 |
import warnings
|
| 187 |
+
from gui import GuiSD
|
| 188 |
|
| 189 |
warnings.filterwarnings(
|
| 190 |
action="ignore",
|
|
|
|
| 205 |
logger.setLevel(logging.DEBUG)
|
| 206 |
|
| 207 |
|
| 208 |
+
# init GuiSD
|
| 209 |
+
sd_gen = GuiSD(
|
| 210 |
+
model_list=model_list,
|
| 211 |
+
task_stablepy=task_stablepy,
|
| 212 |
+
lora_model_list=lora_model_list
|
| 213 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
with open("app.css", "r") as f:
|
| 216 |
CSS: str = f.read()
|
|
|
|
| 255 |
model_name_gui = gr.Dropdown(
|
| 256 |
label="Model",
|
| 257 |
choices=model_list,
|
| 258 |
+
value="models/animaPencilXL_v500.safetensors" or model_list[0],
|
| 259 |
allow_custom_value=True
|
| 260 |
)
|
| 261 |
prompt_gui = gr.Textbox(
|
|
|
|
| 710 |
value=choices_task[0]
|
| 711 |
)
|
| 712 |
|
| 713 |
+
|
| 714 |
task_gui.change(
|
| 715 |
change_preprocessor_choices,
|
| 716 |
[task_gui],
|
gui.py
ADDED
|
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import os
|
| 3 |
+
from stablepy import Model_Diffusers
|
| 4 |
+
from stablepy.diffusers_vanilla.model import scheduler_names
|
| 5 |
+
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
| 6 |
+
import torch
|
| 7 |
+
import re
|
| 8 |
+
import shutil
|
| 9 |
+
import random
|
| 10 |
+
import spaces
|
| 11 |
+
import gradio as gr
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import IPython.display
|
| 14 |
+
import time, json
|
| 15 |
+
from IPython.utils import capture
|
| 16 |
+
import logging
|
| 17 |
+
from utils.string_utils import extract_parameters
|
| 18 |
+
from stablepy import logger
|
| 19 |
+
|
| 20 |
+
logging.getLogger("diffusers").setLevel(logging.ERROR)
|
| 21 |
+
import diffusers
|
| 22 |
+
|
| 23 |
+
diffusers.utils.logging.set_verbosity(40)
|
| 24 |
+
import warnings
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class GuiSD:
|
| 28 |
+
def __init__(self,
|
| 29 |
+
model_list,
|
| 30 |
+
task_stablepy,
|
| 31 |
+
lora_model_list,
|
| 32 |
+
stream=True):
|
| 33 |
+
self.model = None
|
| 34 |
+
|
| 35 |
+
print("Loading model...")
|
| 36 |
+
self.model = Model_Diffusers(
|
| 37 |
+
base_model_id="cagliostrolab/animagine-xl-3.1",
|
| 38 |
+
task_name="txt2img",
|
| 39 |
+
vae_model=None,
|
| 40 |
+
type_model_precision=torch.float16,
|
| 41 |
+
retain_task_model_in_cache=False,
|
| 42 |
+
)
|
| 43 |
+
self.model_list = model_list
|
| 44 |
+
self.task_stablepy = task_stablepy
|
| 45 |
+
self.lora_model_list = lora_model_list
|
| 46 |
+
self.stream = stream
|
| 47 |
+
|
| 48 |
+
def load_new_model(
|
| 49 |
+
self,
|
| 50 |
+
model_name,
|
| 51 |
+
vae_model,
|
| 52 |
+
task,
|
| 53 |
+
progress=gr.Progress(track_tqdm=True)):
|
| 54 |
+
"""
|
| 55 |
+
:param model_name:
|
| 56 |
+
:param vae_model:
|
| 57 |
+
:param task:
|
| 58 |
+
:param progress:
|
| 59 |
+
"""
|
| 60 |
+
yield f"Loading model: {model_name}"
|
| 61 |
+
|
| 62 |
+
vae_model = vae_model if vae_model != "None" else None
|
| 63 |
+
|
| 64 |
+
if model_name in self.model_list:
|
| 65 |
+
model_is_xl = "xl" in model_name.lower()
|
| 66 |
+
sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
|
| 67 |
+
model_type = "SDXL" if model_is_xl else "SD 1.5"
|
| 68 |
+
incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)
|
| 69 |
+
|
| 70 |
+
if incompatible_vae:
|
| 71 |
+
vae_model = None
|
| 72 |
+
|
| 73 |
+
self.model.load_pipe(
|
| 74 |
+
model_name,
|
| 75 |
+
task_name=self.task_stablepy[task],
|
| 76 |
+
vae_model=vae_model if vae_model != "None" else None,
|
| 77 |
+
type_model_precision=torch.float16,
|
| 78 |
+
retain_task_model_in_cache=False,
|
| 79 |
+
)
|
| 80 |
+
yield f"Model loaded: {model_name}"
|
| 81 |
+
|
| 82 |
+
@spaces.GPU
|
| 83 |
+
def generate_pipeline(
|
| 84 |
+
self,
|
| 85 |
+
prompt,
|
| 86 |
+
neg_prompt,
|
| 87 |
+
num_images,
|
| 88 |
+
steps,
|
| 89 |
+
cfg,
|
| 90 |
+
clip_skip,
|
| 91 |
+
seed,
|
| 92 |
+
lora1,
|
| 93 |
+
lora_scale1,
|
| 94 |
+
lora2,
|
| 95 |
+
lora_scale2,
|
| 96 |
+
lora3,
|
| 97 |
+
lora_scale3,
|
| 98 |
+
lora4,
|
| 99 |
+
lora_scale4,
|
| 100 |
+
lora5,
|
| 101 |
+
lora_scale5,
|
| 102 |
+
sampler,
|
| 103 |
+
img_height,
|
| 104 |
+
img_width,
|
| 105 |
+
model_name,
|
| 106 |
+
vae_model,
|
| 107 |
+
task,
|
| 108 |
+
image_control,
|
| 109 |
+
preprocessor_name,
|
| 110 |
+
preprocess_resolution,
|
| 111 |
+
image_resolution,
|
| 112 |
+
style_prompt, # list []
|
| 113 |
+
style_json_file,
|
| 114 |
+
image_mask,
|
| 115 |
+
strength,
|
| 116 |
+
low_threshold,
|
| 117 |
+
high_threshold,
|
| 118 |
+
value_threshold,
|
| 119 |
+
distance_threshold,
|
| 120 |
+
controlnet_output_scaling_in_unet,
|
| 121 |
+
controlnet_start_threshold,
|
| 122 |
+
controlnet_stop_threshold,
|
| 123 |
+
textual_inversion,
|
| 124 |
+
syntax_weights,
|
| 125 |
+
upscaler_model_path,
|
| 126 |
+
upscaler_increases_size,
|
| 127 |
+
esrgan_tile,
|
| 128 |
+
esrgan_tile_overlap,
|
| 129 |
+
hires_steps,
|
| 130 |
+
hires_denoising_strength,
|
| 131 |
+
hires_sampler,
|
| 132 |
+
hires_prompt,
|
| 133 |
+
hires_negative_prompt,
|
| 134 |
+
hires_before_adetailer,
|
| 135 |
+
hires_after_adetailer,
|
| 136 |
+
loop_generation,
|
| 137 |
+
leave_progress_bar,
|
| 138 |
+
disable_progress_bar,
|
| 139 |
+
image_previews,
|
| 140 |
+
display_images,
|
| 141 |
+
save_generated_images,
|
| 142 |
+
image_storage_location,
|
| 143 |
+
retain_compel_previous_load,
|
| 144 |
+
retain_detailfix_model_previous_load,
|
| 145 |
+
retain_hires_model_previous_load,
|
| 146 |
+
t2i_adapter_preprocessor,
|
| 147 |
+
t2i_adapter_conditioning_scale,
|
| 148 |
+
t2i_adapter_conditioning_factor,
|
| 149 |
+
xformers_memory_efficient_attention,
|
| 150 |
+
freeu,
|
| 151 |
+
generator_in_cpu,
|
| 152 |
+
adetailer_inpaint_only,
|
| 153 |
+
adetailer_verbose,
|
| 154 |
+
adetailer_sampler,
|
| 155 |
+
adetailer_active_a,
|
| 156 |
+
prompt_ad_a,
|
| 157 |
+
negative_prompt_ad_a,
|
| 158 |
+
strength_ad_a,
|
| 159 |
+
face_detector_ad_a,
|
| 160 |
+
person_detector_ad_a,
|
| 161 |
+
hand_detector_ad_a,
|
| 162 |
+
mask_dilation_a,
|
| 163 |
+
mask_blur_a,
|
| 164 |
+
mask_padding_a,
|
| 165 |
+
adetailer_active_b,
|
| 166 |
+
prompt_ad_b,
|
| 167 |
+
negative_prompt_ad_b,
|
| 168 |
+
strength_ad_b,
|
| 169 |
+
face_detector_ad_b,
|
| 170 |
+
person_detector_ad_b,
|
| 171 |
+
hand_detector_ad_b,
|
| 172 |
+
mask_dilation_b,
|
| 173 |
+
mask_blur_b,
|
| 174 |
+
mask_padding_b,
|
| 175 |
+
retain_task_cache_gui,
|
| 176 |
+
image_ip1,
|
| 177 |
+
mask_ip1,
|
| 178 |
+
model_ip1,
|
| 179 |
+
mode_ip1,
|
| 180 |
+
scale_ip1,
|
| 181 |
+
image_ip2,
|
| 182 |
+
mask_ip2,
|
| 183 |
+
model_ip2,
|
| 184 |
+
mode_ip2,
|
| 185 |
+
scale_ip2):
|
| 186 |
+
vae_model = vae_model if vae_model != "None" else None
|
| 187 |
+
loras_list: list = [lora1, lora2, lora3, lora4, lora5]
|
| 188 |
+
vae_msg: str = f"VAE: {vae_model}" if vae_model else ""
|
| 189 |
+
msg_lora: list = []
|
| 190 |
+
|
| 191 |
+
if model_name in self.model_list:
|
| 192 |
+
model_is_xl = "xl" in model_name.lower()
|
| 193 |
+
sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
|
| 194 |
+
model_type = "SDXL" if model_is_xl else "SD 1.5"
|
| 195 |
+
incompatible_vae = ((model_is_xl and
|
| 196 |
+
vae_model and
|
| 197 |
+
not sdxl_in_vae) or
|
| 198 |
+
(not model_is_xl and
|
| 199 |
+
sdxl_in_vae))
|
| 200 |
+
|
| 201 |
+
if incompatible_vae:
|
| 202 |
+
msg_inc_vae = (
|
| 203 |
+
f"The selected VAE is for a {'SD 1.5' if model_is_xl else 'SDXL'} model, but you"
|
| 204 |
+
f" are using a {model_type} model. The default VAE "
|
| 205 |
+
"will be used."
|
| 206 |
+
)
|
| 207 |
+
gr.Info(msg_inc_vae)
|
| 208 |
+
vae_msg = msg_inc_vae
|
| 209 |
+
vae_model = None
|
| 210 |
+
|
| 211 |
+
for la in loras_list:
|
| 212 |
+
if la is None or la == "None" or la not in self.lora_model_list:
|
| 213 |
+
continue
|
| 214 |
+
|
| 215 |
+
print(la)
|
| 216 |
+
lora_type = ("animetarot" in la.lower() or "Hyper-SD15-8steps".lower() in la.lower())
|
| 217 |
+
if (model_is_xl and lora_type) or (not model_is_xl and not lora_type):
|
| 218 |
+
msg_inc_lora = f"The LoRA {la} is for {'SD 1.5' if model_is_xl else 'SDXL'}, but you are using {model_type}."
|
| 219 |
+
gr.Info(msg_inc_lora)
|
| 220 |
+
msg_lora.append(msg_inc_lora)
|
| 221 |
+
|
| 222 |
+
task = self.task_stablepy[task]
|
| 223 |
+
|
| 224 |
+
params_ip_img: list = []
|
| 225 |
+
params_ip_msk: list = []
|
| 226 |
+
params_ip_model: list = []
|
| 227 |
+
params_ip_mode: list = []
|
| 228 |
+
params_ip_scale: list = []
|
| 229 |
+
|
| 230 |
+
all_adapters = [
|
| 231 |
+
(image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1),
|
| 232 |
+
(image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2),
|
| 233 |
+
]
|
| 234 |
+
|
| 235 |
+
for (imgip,
|
| 236 |
+
mskip,
|
| 237 |
+
modelip,
|
| 238 |
+
modeip,
|
| 239 |
+
scaleip) in all_adapters:
|
| 240 |
+
if imgip:
|
| 241 |
+
params_ip_img.append(imgip)
|
| 242 |
+
if mskip:
|
| 243 |
+
params_ip_msk.append(mskip)
|
| 244 |
+
params_ip_model.append(modelip)
|
| 245 |
+
params_ip_mode.append(modeip)
|
| 246 |
+
params_ip_scale.append(scaleip)
|
| 247 |
+
|
| 248 |
+
# First load
|
| 249 |
+
model_precision = torch.float16
|
| 250 |
+
if not self.model:
|
| 251 |
+
from modelstream import Model_Diffusers2
|
| 252 |
+
|
| 253 |
+
print("Loading model...")
|
| 254 |
+
self.model = Model_Diffusers2(
|
| 255 |
+
base_model_id=model_name,
|
| 256 |
+
task_name=task,
|
| 257 |
+
vae_model=vae_model if vae_model != "None" else None,
|
| 258 |
+
type_model_precision=model_precision,
|
| 259 |
+
retain_task_model_in_cache=retain_task_cache_gui,
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
if task != "txt2img" and not image_control:
|
| 263 |
+
raise ValueError(
|
| 264 |
+
"No control image found: To use this function, "
|
| 265 |
+
"you have to upload an image in 'Image ControlNet/Inpaint/Img2img'"
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
if task == "inpaint" and not image_mask:
|
| 269 |
+
raise ValueError("No mask image found: Specify one in 'Image Mask'")
|
| 270 |
+
|
| 271 |
+
if upscaler_model_path in [None, "Lanczos", "Nearest"]:
|
| 272 |
+
upscaler_model = upscaler_model_path
|
| 273 |
+
else:
|
| 274 |
+
directory_upscalers = 'upscalers'
|
| 275 |
+
os.makedirs(directory_upscalers, exist_ok=True)
|
| 276 |
+
|
| 277 |
+
url_upscaler = upscaler_dict_gui[upscaler_model_path]
|
| 278 |
+
|
| 279 |
+
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
|
| 280 |
+
download_things(
|
| 281 |
+
directory_upscalers,
|
| 282 |
+
url_upscaler,
|
| 283 |
+
hf_token
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"
|
| 287 |
+
|
| 288 |
+
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)
|
| 289 |
+
|
| 290 |
+
print("Config model:", model_name, vae_model, loras_list)
|
| 291 |
+
|
| 292 |
+
self.model.load_pipe(
|
| 293 |
+
model_name,
|
| 294 |
+
task_name=task,
|
| 295 |
+
vae_model=vae_model if vae_model != "None" else None,
|
| 296 |
+
type_model_precision=model_precision,
|
| 297 |
+
retain_task_model_in_cache=retain_task_cache_gui,
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
if textual_inversion and self.model.class_name == "StableDiffusionXLPipeline":
|
| 301 |
+
print("No Textual inversion for SDXL")
|
| 302 |
+
|
| 303 |
+
adetailer_params_A: dict = {
|
| 304 |
+
"face_detector_ad": face_detector_ad_a,
|
| 305 |
+
"person_detector_ad": person_detector_ad_a,
|
| 306 |
+
"hand_detector_ad": hand_detector_ad_a,
|
| 307 |
+
"prompt": prompt_ad_a,
|
| 308 |
+
"negative_prompt": negative_prompt_ad_a,
|
| 309 |
+
"strength": strength_ad_a,
|
| 310 |
+
# "image_list_task" : None,
|
| 311 |
+
"mask_dilation": mask_dilation_a,
|
| 312 |
+
"mask_blur": mask_blur_a,
|
| 313 |
+
"mask_padding": mask_padding_a,
|
| 314 |
+
"inpaint_only": adetailer_inpaint_only,
|
| 315 |
+
"sampler": adetailer_sampler,
|
| 316 |
+
}
|
| 317 |
+
|
| 318 |
+
adetailer_params_B: dict = {
|
| 319 |
+
"face_detector_ad": face_detector_ad_b,
|
| 320 |
+
"person_detector_ad": person_detector_ad_b,
|
| 321 |
+
"hand_detector_ad": hand_detector_ad_b,
|
| 322 |
+
"prompt": prompt_ad_b,
|
| 323 |
+
"negative_prompt": negative_prompt_ad_b,
|
| 324 |
+
"strength": strength_ad_b,
|
| 325 |
+
# "image_list_task" : None,
|
| 326 |
+
"mask_dilation": mask_dilation_b,
|
| 327 |
+
"mask_blur": mask_blur_b,
|
| 328 |
+
"mask_padding": mask_padding_b,
|
| 329 |
+
}
|
| 330 |
+
pipe_params: dict = {
|
| 331 |
+
"prompt": prompt,
|
| 332 |
+
"negative_prompt": neg_prompt,
|
| 333 |
+
"img_height": img_height,
|
| 334 |
+
"img_width": img_width,
|
| 335 |
+
"num_images": num_images,
|
| 336 |
+
"num_steps": steps,
|
| 337 |
+
"guidance_scale": cfg,
|
| 338 |
+
"clip_skip": clip_skip,
|
| 339 |
+
"seed": seed,
|
| 340 |
+
"image": image_control,
|
| 341 |
+
"preprocessor_name": preprocessor_name,
|
| 342 |
+
"preprocess_resolution": preprocess_resolution,
|
| 343 |
+
"image_resolution": image_resolution,
|
| 344 |
+
"style_prompt": style_prompt if style_prompt else "",
|
| 345 |
+
"style_json_file": "",
|
| 346 |
+
"image_mask": image_mask, # only for Inpaint
|
| 347 |
+
"strength": strength, # only for Inpaint or ...
|
| 348 |
+
"low_threshold": low_threshold,
|
| 349 |
+
"high_threshold": high_threshold,
|
| 350 |
+
"value_threshold": value_threshold,
|
| 351 |
+
"distance_threshold": distance_threshold,
|
| 352 |
+
"lora_A": lora1 if lora1 != "None" else None,
|
| 353 |
+
"lora_scale_A": lora_scale1,
|
| 354 |
+
"lora_B": lora2 if lora2 != "None" else None,
|
| 355 |
+
"lora_scale_B": lora_scale2,
|
| 356 |
+
"lora_C": lora3 if lora3 != "None" else None,
|
| 357 |
+
"lora_scale_C": lora_scale3,
|
| 358 |
+
"lora_D": lora4 if lora4 != "None" else None,
|
| 359 |
+
"lora_scale_D": lora_scale4,
|
| 360 |
+
"lora_E": lora5 if lora5 != "None" else None,
|
| 361 |
+
"lora_scale_E": lora_scale5,
|
| 362 |
+
"textual_inversion": embed_list if textual_inversion and self.model.class_name != "StableDiffusionXLPipeline" else [],
|
| 363 |
+
"syntax_weights": syntax_weights, # "Classic"
|
| 364 |
+
"sampler": sampler,
|
| 365 |
+
"xformers_memory_efficient_attention": xformers_memory_efficient_attention,
|
| 366 |
+
"gui_active": True,
|
| 367 |
+
"loop_generation": loop_generation,
|
| 368 |
+
"controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet),
|
| 369 |
+
"control_guidance_start": float(controlnet_start_threshold),
|
| 370 |
+
"control_guidance_end": float(controlnet_stop_threshold),
|
| 371 |
+
"generator_in_cpu": generator_in_cpu,
|
| 372 |
+
"FreeU": freeu,
|
| 373 |
+
"adetailer_A": adetailer_active_a,
|
| 374 |
+
"adetailer_A_params": adetailer_params_A,
|
| 375 |
+
"adetailer_B": adetailer_active_b,
|
| 376 |
+
"adetailer_B_params": adetailer_params_B,
|
| 377 |
+
"leave_progress_bar": leave_progress_bar,
|
| 378 |
+
"disable_progress_bar": disable_progress_bar,
|
| 379 |
+
"image_previews": image_previews,
|
| 380 |
+
"display_images": display_images,
|
| 381 |
+
"save_generated_images": save_generated_images,
|
| 382 |
+
"image_storage_location": image_storage_location,
|
| 383 |
+
"retain_compel_previous_load": retain_compel_previous_load,
|
| 384 |
+
"retain_detailfix_model_previous_load": retain_detailfix_model_previous_load,
|
| 385 |
+
"retain_hires_model_previous_load": retain_hires_model_previous_load,
|
| 386 |
+
"t2i_adapter_preprocessor": t2i_adapter_preprocessor,
|
| 387 |
+
"t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale),
|
| 388 |
+
"t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor),
|
| 389 |
+
"upscaler_model_path": upscaler_model,
|
| 390 |
+
"upscaler_increases_size": upscaler_increases_size,
|
| 391 |
+
"esrgan_tile": esrgan_tile,
|
| 392 |
+
"esrgan_tile_overlap": esrgan_tile_overlap,
|
| 393 |
+
"hires_steps": hires_steps,
|
| 394 |
+
"hires_denoising_strength": hires_denoising_strength,
|
| 395 |
+
"hires_prompt": hires_prompt,
|
| 396 |
+
"hires_negative_prompt": hires_negative_prompt,
|
| 397 |
+
"hires_sampler": hires_sampler,
|
| 398 |
+
"hires_before_adetailer": hires_before_adetailer,
|
| 399 |
+
"hires_after_adetailer": hires_after_adetailer,
|
| 400 |
+
"ip_adapter_image": params_ip_img,
|
| 401 |
+
"ip_adapter_mask": params_ip_msk,
|
| 402 |
+
"ip_adapter_model": params_ip_model,
|
| 403 |
+
"ip_adapter_mode": params_ip_mode,
|
| 404 |
+
"ip_adapter_scale": params_ip_scale,
|
| 405 |
+
}
|
| 406 |
+
|
| 407 |
+
# print(pipe_params)
|
| 408 |
+
|
| 409 |
+
random_number = random.randint(1, 100)
|
| 410 |
+
if random_number < 25 and num_images < 3:
|
| 411 |
+
if (not upscaler_model and
|
| 412 |
+
steps < 45 and
|
| 413 |
+
task in ["txt2img", "img2img"] and
|
| 414 |
+
not adetailer_active_a and
|
| 415 |
+
not adetailer_active_b):
|
| 416 |
+
num_images *= 2
|
| 417 |
+
pipe_params["num_images"] = num_images
|
| 418 |
+
gr.Info("Num images x 2 🎉")
|
| 419 |
+
|
| 420 |
+
# Maybe fix lora issue: 'Cannot copy out of meta tensor; no data!''
|
| 421 |
+
self.model.pipe.to("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 422 |
+
|
| 423 |
+
info_state = f"PROCESSING"
|
| 424 |
+
for img, seed, data in self.model(**pipe_params):
|
| 425 |
+
info_state += "."
|
| 426 |
+
if data:
|
| 427 |
+
info_state = f"COMPLETED. Seeds: {str(seed)}"
|
| 428 |
+
if vae_msg:
|
| 429 |
+
info_state = info_state + "<br>" + vae_msg
|
| 430 |
+
if msg_lora:
|
| 431 |
+
info_state = info_state + "<br>" + "<br>".join(msg_lora)
|
| 432 |
+
yield img, info_state
|
service/gemini_service.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def prompt_gemini(prompt: str):
|
| 2 |
+
"""
|
| 3 |
+
:param prompt:
|
| 4 |
+
:return:
|
| 5 |
+
"""
|
| 6 |
+
import os
|
| 7 |
+
gemini_api_key: str = os.environ.get("GEMINI_API_KEY")
|
| 8 |
+
if not gemini_api_key:
|
| 9 |
+
print("\033[91mYou need an API key to download Gemini models.\033[0m")
|
| 10 |
+
|
| 11 |
+
return prompt
|
utils/model_utils.py
CHANGED
|
@@ -20,4 +20,4 @@ def get_model_list(directory_path):
|
|
| 20 |
# model_list.append((name_without_extension, file_path))
|
| 21 |
model_list.append(file_path)
|
| 22 |
print('\033[34mFILE: ' + file_path + '\033[0m')
|
| 23 |
-
return model_list
|
|
|
|
| 20 |
# model_list.append((name_without_extension, file_path))
|
| 21 |
model_list.append(file_path)
|
| 22 |
print('\033[34mFILE: ' + file_path + '\033[0m')
|
| 23 |
+
return model_list
|