Spaces:
Build error
Build error
Upload 2 files
Browse files- app.py +52 -0
- requirements.txt +3 -3
app.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import joblib
|
| 5 |
+
import requests
|
| 6 |
+
|
| 7 |
+
# Title
|
| 8 |
+
st.title("🛒 SuperKart Sales Forecasting")
|
| 9 |
+
|
| 10 |
+
st.markdown("Enter product and store details to predict sales.")
|
| 11 |
+
|
| 12 |
+
# Input fields
|
| 13 |
+
product_weight = st.number_input("Product Weight (kg)", min_value=1.0, step=0.1)
|
| 14 |
+
product_sugar_content = st.selectbox("Sugar Content", ["Low Sugar", "Regular", "No Sugar", "Sugar Free"])
|
| 15 |
+
product_allocated_area = st.slider("Display Area (%)", 0.0, 0.3, 0.05)
|
| 16 |
+
product_type = st.selectbox("Product Type", [
|
| 17 |
+
"Meat", "Snack Foods", "Hard Drinks", "Dairy", "Canned", "Soft Drinks", "Health and Hygiene",
|
| 18 |
+
"Baking Goods", "Bread", "Breakfast", "Frozen Foods", "Fruits and Vegetables",
|
| 19 |
+
"Household", "Seafood", "Starchy Foods", "Others"
|
| 20 |
+
])
|
| 21 |
+
product_mrp = st.number_input("Product MRP (₹)", min_value=10.0, step=1.0)
|
| 22 |
+
store_size = st.selectbox("Store Size", ["Small", "Medium", "High"])
|
| 23 |
+
store_location_city_type = st.selectbox("City Tier", ["Tier 1", "Tier 2", "Tier 3"])
|
| 24 |
+
store_type = st.selectbox("Store Type", [
|
| 25 |
+
"Departmental Store", "Supermarket Type1", "Supermarket Type2", "Food Mart"
|
| 26 |
+
])
|
| 27 |
+
store_age = st.slider("Store Age (Years)", 1, 40, 15)
|
| 28 |
+
|
| 29 |
+
# Submit
|
| 30 |
+
if st.button("Predict Sales"):
|
| 31 |
+
input_data = {
|
| 32 |
+
"Product_Weight": product_weight,
|
| 33 |
+
"Product_Sugar_Content": product_sugar_content,
|
| 34 |
+
"Product_Allocated_Area": product_allocated_area,
|
| 35 |
+
"Product_Type": product_type,
|
| 36 |
+
"Product_MRP": product_mrp,
|
| 37 |
+
"Store_Size": store_size,
|
| 38 |
+
"Store_Location_City_Type": store_location_city_type,
|
| 39 |
+
"Store_Type": store_type,
|
| 40 |
+
"Store_Age": store_age
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
# Call the backend API
|
| 44 |
+
try:
|
| 45 |
+
response = requests.post("https://<your-backend-username>.huggingface.space/<backend-space-name>/predict", json=input_data)
|
| 46 |
+
result = response.json()
|
| 47 |
+
if "predicted_sales" in result:
|
| 48 |
+
st.success(f"📈 Predicted Sales: ₹{result['predicted_sales']}")
|
| 49 |
+
else:
|
| 50 |
+
st.error(f"Error: {result.get('error', 'Unknown')}")
|
| 51 |
+
except Exception as e:
|
| 52 |
+
st.error(f"API call failed: {e}")
|
requirements.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
| 1 |
+
streamlit==1.35.0
|
| 2 |
+
requests==2.32.3
|
| 3 |
+
pandas==2.2.2
|