Update app.py
Browse files
app.py
CHANGED
|
@@ -1,127 +1,33 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import random
|
| 4 |
-
import spaces
|
| 5 |
-
import torch
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
|
| 8 |
-
|
| 9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
pipe = DiffusionPipeline.from_pretrained("codermert/zehra_flux", torch_dtype=dtype).to(device)
|
| 11 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 12 |
-
MAX_IMAGE_SIZE = 2048
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
generator = torch.Generator().manual_seed(seed)
|
| 20 |
-
images = []
|
| 21 |
-
|
| 22 |
-
for _ in range(num_images):
|
| 23 |
-
image = pipe(
|
| 24 |
-
prompt=prompt,
|
| 25 |
-
width=width,
|
| 26 |
-
height=height,
|
| 27 |
-
num_inference_steps=num_inference_steps,
|
| 28 |
-
generator=generator,
|
| 29 |
-
guidance_scale=0.0
|
| 30 |
-
).images[0]
|
| 31 |
-
images.append(image)
|
| 32 |
-
# Her görsel için farklı seed kullan
|
| 33 |
-
seed = random.randint(0, MAX_SEED)
|
| 34 |
-
generator = torch.Generator().manual_seed(seed)
|
| 35 |
-
|
| 36 |
-
return images, seed
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
}
|
| 49 |
-
.generated-images {
|
| 50 |
-
display: grid;
|
| 51 |
-
grid-template-columns: repeat(2, 1fr);
|
| 52 |
-
gap: 10px;
|
| 53 |
-
}
|
| 54 |
-
"""
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
prompt = gr.Text(
|
| 64 |
-
label="Prompt",
|
| 65 |
-
show_label=False,
|
| 66 |
-
max_lines=1,
|
| 67 |
-
placeholder="Görseliniz için prompt girin",
|
| 68 |
-
container=False,
|
| 69 |
-
)
|
| 70 |
-
run_button = gr.Button("Oluştur", scale=0)
|
| 71 |
-
|
| 72 |
-
# 4 görsel için grid layout
|
| 73 |
-
with gr.Row(elem_classes="generated-images"):
|
| 74 |
-
results = [gr.Image(label=f"Sonuç {i+1}", show_label=True) for i in range(4)]
|
| 75 |
-
|
| 76 |
-
with gr.Accordion("Gelişmiş Ayarlar", open=False):
|
| 77 |
-
seed = gr.Slider(
|
| 78 |
-
label="Seed",
|
| 79 |
-
minimum=0,
|
| 80 |
-
maximum=MAX_SEED,
|
| 81 |
-
step=1,
|
| 82 |
-
value=0,
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
randomize_seed = gr.Checkbox(label="Rastgele seed", value=True)
|
| 86 |
-
|
| 87 |
-
with gr.Row():
|
| 88 |
-
width = gr.Slider(
|
| 89 |
-
label="Genişlik",
|
| 90 |
-
minimum=256,
|
| 91 |
-
maximum=MAX_IMAGE_SIZE,
|
| 92 |
-
step=32,
|
| 93 |
-
value=1024,
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
height = gr.Slider(
|
| 97 |
-
label="Yükseklik",
|
| 98 |
-
minimum=256,
|
| 99 |
-
maximum=MAX_IMAGE_SIZE,
|
| 100 |
-
step=32,
|
| 101 |
-
value=1024,
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
-
num_inference_steps = gr.Slider(
|
| 105 |
-
label="Inference adım sayısı",
|
| 106 |
-
minimum=1,
|
| 107 |
-
maximum=50,
|
| 108 |
-
step=1,
|
| 109 |
-
value=4,
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
gr.Examples(
|
| 113 |
-
examples=examples,
|
| 114 |
-
fn=infer,
|
| 115 |
-
inputs=[prompt],
|
| 116 |
-
outputs=[*results, seed],
|
| 117 |
-
cache_examples="lazy"
|
| 118 |
-
)
|
| 119 |
-
|
| 120 |
-
gr.on(
|
| 121 |
-
triggers=[run_button.click, prompt.submit],
|
| 122 |
-
fn=infer,
|
| 123 |
-
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
|
| 124 |
-
outputs=[*results, seed]
|
| 125 |
-
)
|
| 126 |
|
| 127 |
-
demo.
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
from infer import infer_image, infer_video
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
input_image = gr.Image(type='pil', label='Input Image')
|
| 6 |
+
input_model_image = gr.Radio([('x2', 2), ('x4', 4), ('x8', 8)], type="value", value=4, label="Model Upscale/Enhance Type")
|
| 7 |
+
submit_image_button = gr.Button('Submit')
|
| 8 |
+
output_image = gr.Image(type="filepath", label="Output Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
tab_img = gr.Interface(
|
| 11 |
+
fn=infer_image,
|
| 12 |
+
inputs=[input_image, input_model_image],
|
| 13 |
+
outputs=output_image,
|
| 14 |
+
title="Real-ESRGAN Pytorch",
|
| 15 |
+
description="Gradio UI for Real-ESRGAN Pytorch version. To use it, simply upload your image and choose the model. Read more at the links below. Please click submit only once <br>Credits: [Nick088](https://linktr.ee/Nick088), Xinntao, Tencent, Geeve George, ai-forever, daroche <br><p style='text-align: center'><a href='https://github.com/Nick088/Real-ESRGAN_Pytorch'>Github Repo</a></p>"
|
| 16 |
+
)
|
| 17 |
|
| 18 |
+
input_video = gr.Video(label='Input Video')
|
| 19 |
+
input_model_video = gr.Radio([('x2', 2), ('x4', 4), ('x8', 8)], type="value", value=2, label="Model Upscale/Enhance Type")
|
| 20 |
+
submit_video_button = gr.Button('Submit')
|
| 21 |
+
output_video = gr.Video(label='Output Video')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
tab_vid = gr.Interface(
|
| 24 |
+
fn=infer_video,
|
| 25 |
+
inputs=[input_video, input_model_video],
|
| 26 |
+
outputs=output_video,
|
| 27 |
+
title="Real-ESRGAN Pytorch",
|
| 28 |
+
description="Gradio UI for Real-ESRGAN Pytorch version. To use it, simply upload your video and choose the model. Read more at the links below. Please click submit only once <br>Credits: [Nick088](https://linktr.ee/Nick088), Xinntao, Tencent, Geeve George, ai-forever, daroche <br><p style='text-align: center'><a href='https://arxiv.org/abs/2107.10833'>Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data</a> | <a href='https://github.com/ai-forever/Real-ESRGAN'>Github Repo</a></p>"
|
| 29 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
demo = gr.TabbedInterface([tab_img, tab_vid], ["Image", "Video"])
|
| 32 |
+
|
| 33 |
+
demo.launch(debug=True, show_error=True, share=True)
|