Update app.py
Browse files
app.py
CHANGED
|
@@ -4,28 +4,30 @@ import torch
|
|
| 4 |
from PIL import Image
|
| 5 |
import random
|
| 6 |
|
| 7 |
-
model_id = "
|
| 8 |
-
lora_model_id = "codermert/
|
| 9 |
|
| 10 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.
|
| 11 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 12 |
-
pipe = pipe.to("
|
| 13 |
pipe.load_lora_weights(lora_model_id)
|
|
|
|
| 14 |
|
| 15 |
def generate_image(prompt, negative_prompt, steps, cfg_scale, seed, strength):
|
| 16 |
if seed == -1:
|
| 17 |
seed = random.randint(1, 1000000000)
|
| 18 |
|
| 19 |
-
generator = torch.Generator(
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
| 29 |
|
| 30 |
return image, seed
|
| 31 |
|
|
@@ -44,15 +46,15 @@ examples = [
|
|
| 44 |
]
|
| 45 |
|
| 46 |
with gr.Blocks(theme='default', css=css) as app:
|
| 47 |
-
gr.HTML("<center><h1>Mert Flux LoRA Explorer</h1></center>")
|
| 48 |
with gr.Column(elem_id="app-container"):
|
| 49 |
with gr.Row():
|
| 50 |
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2)
|
| 51 |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What to avoid in the image", lines=2)
|
| 52 |
with gr.Row():
|
| 53 |
with gr.Column():
|
| 54 |
-
steps = gr.Slider(label="Sampling steps", value=30, minimum=10, maximum=
|
| 55 |
-
cfg_scale = gr.Slider(label="CFG Scale", value=7.5, minimum=1, maximum=
|
| 56 |
with gr.Column():
|
| 57 |
strength = gr.Slider(label="LoRA Strength", value=0.75, minimum=0, maximum=1, step=0.01)
|
| 58 |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import random
|
| 6 |
|
| 7 |
+
model_id = "CompVis/stable-diffusion-v1-4" # Daha hafif bir model
|
| 8 |
+
lora_model_id = "codermert/mert_flux" # Your LoRA model
|
| 9 |
|
| 10 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
|
| 11 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 12 |
+
pipe = pipe.to("cpu") # CPU'ya taşıyoruz
|
| 13 |
pipe.load_lora_weights(lora_model_id)
|
| 14 |
+
pipe.safety_checker = None # Safety checker'ı devre dışı bırakıyoruz
|
| 15 |
|
| 16 |
def generate_image(prompt, negative_prompt, steps, cfg_scale, seed, strength):
|
| 17 |
if seed == -1:
|
| 18 |
seed = random.randint(1, 1000000000)
|
| 19 |
|
| 20 |
+
generator = torch.Generator().manual_seed(seed)
|
| 21 |
|
| 22 |
+
with torch.no_grad():
|
| 23 |
+
image = pipe(
|
| 24 |
+
prompt=prompt,
|
| 25 |
+
negative_prompt=negative_prompt,
|
| 26 |
+
num_inference_steps=steps,
|
| 27 |
+
guidance_scale=cfg_scale,
|
| 28 |
+
generator=generator,
|
| 29 |
+
cross_attention_kwargs={"scale": strength},
|
| 30 |
+
).images[0]
|
| 31 |
|
| 32 |
return image, seed
|
| 33 |
|
|
|
|
| 46 |
]
|
| 47 |
|
| 48 |
with gr.Blocks(theme='default', css=css) as app:
|
| 49 |
+
gr.HTML("<center><h1>Mert Flux LoRA Explorer (CPU Version)</h1></center>")
|
| 50 |
with gr.Column(elem_id="app-container"):
|
| 51 |
with gr.Row():
|
| 52 |
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2)
|
| 53 |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What to avoid in the image", lines=2)
|
| 54 |
with gr.Row():
|
| 55 |
with gr.Column():
|
| 56 |
+
steps = gr.Slider(label="Sampling steps", value=30, minimum=10, maximum=50, step=1)
|
| 57 |
+
cfg_scale = gr.Slider(label="CFG Scale", value=7.5, minimum=1, maximum=15, step=0.5)
|
| 58 |
with gr.Column():
|
| 59 |
strength = gr.Slider(label="LoRA Strength", value=0.75, minimum=0, maximum=1, step=0.01)
|
| 60 |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|