chencws commited on
Commit
23586c3
·
verified ·
1 Parent(s): e8a67f7

Upload 36 files

Browse files
Files changed (36) hide show
  1. dataset/dataset_TM_eval.py +241 -0
  2. dataset/dataset_TM_train.py +188 -0
  3. dataset/dataset_VQ.py +109 -0
  4. dataset/dataset_tokenize.py +136 -0
  5. dataset/prepare/download_extractor.sh +15 -0
  6. dataset/prepare/download_glove.sh +9 -0
  7. dataset/prepare/download_model.sh +12 -0
  8. dataset/prepare/download_smpl.sh +13 -0
  9. models/__pycache__/encdec.cpython-38.pyc +0 -0
  10. models/__pycache__/encdec.cpython-39.pyc +0 -0
  11. models/__pycache__/evaluator_wrapper.cpython-38.pyc +0 -0
  12. models/__pycache__/evaluator_wrapper.cpython-39.pyc +0 -0
  13. models/__pycache__/modules.cpython-38.pyc +0 -0
  14. models/__pycache__/modules.cpython-39.pyc +0 -0
  15. models/__pycache__/pos_encoding.cpython-38.pyc +0 -0
  16. models/__pycache__/pos_encoding.cpython-39.pyc +0 -0
  17. models/__pycache__/quantize_cnn.cpython-38.pyc +0 -0
  18. models/__pycache__/quantize_cnn.cpython-39.pyc +0 -0
  19. models/__pycache__/resnet.cpython-38.pyc +0 -0
  20. models/__pycache__/resnet.cpython-39.pyc +0 -0
  21. models/__pycache__/rotation2xyz.cpython-38.pyc +0 -0
  22. models/__pycache__/smpl.cpython-38.pyc +0 -0
  23. models/__pycache__/t2m_trans.cpython-38.pyc +0 -0
  24. models/__pycache__/t2m_trans.cpython-39.pyc +0 -0
  25. models/__pycache__/vqvae.cpython-38.pyc +0 -0
  26. models/__pycache__/vqvae.cpython-39.pyc +0 -0
  27. models/encdec.py +67 -0
  28. models/evaluator_wrapper.py +92 -0
  29. models/modules.py +109 -0
  30. models/pos_encoding.py +43 -0
  31. models/quantize_cnn.py +413 -0
  32. models/resnet.py +82 -0
  33. models/rotation2xyz.py +92 -0
  34. models/smpl.py +97 -0
  35. models/t2m_trans.py +239 -0
  36. models/vqvae.py +118 -0
dataset/dataset_TM_eval.py ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils import data
3
+ import numpy as np
4
+ from os.path import join as pjoin
5
+ import random
6
+ import codecs as cs
7
+ from tqdm import tqdm
8
+
9
+ import utils.paramUtil as paramUtil
10
+ from torch.utils.data._utils.collate import default_collate
11
+
12
+
13
+ def collate_fn(batch):
14
+ batch.sort(key=lambda x: x[3], reverse=True)
15
+ return default_collate(batch)
16
+
17
+
18
+ '''For use of training text-2-motion generative model'''
19
+ class Text2MotionDataset(data.Dataset):
20
+ def __init__(self, dataset_name, is_test, w_vectorizer, feat_bias = 5, max_text_len = 20, unit_length = 4):
21
+
22
+ self.max_length = 20
23
+ self.pointer = 0
24
+ self.dataset_name = dataset_name
25
+ self.is_test = is_test
26
+ self.max_text_len = max_text_len
27
+ self.unit_length = unit_length
28
+ self.w_vectorizer = w_vectorizer
29
+ if dataset_name == 't2m':
30
+ self.data_root = './dataset/HumanML3D'
31
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
32
+ self.text_dir = pjoin(self.data_root, 'texts')
33
+ self.joints_num = 22
34
+ radius = 4
35
+ fps = 20
36
+ self.max_motion_length = 196
37
+ dim_pose = 263
38
+ kinematic_chain = paramUtil.t2m_kinematic_chain
39
+ self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
40
+ elif dataset_name == 'kit':
41
+ self.data_root = './dataset/KIT-ML'
42
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
43
+ self.text_dir = pjoin(self.data_root, 'texts')
44
+ self.joints_num = 21
45
+ radius = 240 * 8
46
+ fps = 12.5
47
+ dim_pose = 251
48
+ self.max_motion_length = 196
49
+ kinematic_chain = paramUtil.kit_kinematic_chain
50
+ self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
51
+
52
+
53
+ mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
54
+ std = np.load(pjoin(self.meta_dir, 'std.npy'))
55
+
56
+ if is_test:
57
+ split_file = pjoin(self.data_root, 'test.txt') # test.txt
58
+ else:
59
+ split_file = pjoin(self.data_root, 'val.txt')
60
+
61
+ min_motion_len = 40 if self.dataset_name =='t2m' else 24
62
+ # min_motion_len = 64
63
+
64
+ joints_num = self.joints_num
65
+
66
+ data_dict = {}
67
+ id_list = []
68
+ with cs.open(split_file, 'r') as f:
69
+ for line in f.readlines():
70
+ id_list.append(line.strip())
71
+
72
+ new_name_list = []
73
+ length_list = []
74
+ for name in tqdm(id_list):
75
+ try:
76
+ motion = np.load(pjoin(self.motion_dir, name + '.npy'))
77
+ if (len(motion)) < min_motion_len or (len(motion) >= 200):
78
+ continue
79
+ text_data = []
80
+ flag = False
81
+
82
+ with cs.open(pjoin(self.text_dir, name + '.txt')) as f:
83
+ for line in f.readlines():
84
+ text_dict = {}
85
+ line_split = line.strip().split('#')
86
+ caption = line_split[0]
87
+ txt_perb = line_split[-1]
88
+ tokens = line_split[1].split(' ')
89
+ f_tag = float(line_split[2])
90
+ to_tag = float(line_split[3])
91
+ f_tag = 0.0 if np.isnan(f_tag) else f_tag
92
+ to_tag = 0.0 if np.isnan(to_tag) else to_tag
93
+
94
+ text_dict['caption'] = caption
95
+ text_dict['caption_perb'] = txt_perb
96
+ text_dict['tokens'] = tokens
97
+ if f_tag == 0.0 and to_tag == 0.0:
98
+ flag = True
99
+ text_data.append(text_dict)
100
+ else:
101
+ try:
102
+ n_motion = motion[int(f_tag*fps) : int(to_tag*fps)]
103
+ if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200):
104
+ continue
105
+ new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
106
+ while new_name in data_dict:
107
+ new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
108
+ data_dict[new_name] = {'motion': n_motion,
109
+ 'length': len(n_motion),
110
+ 'text':[text_dict]}
111
+ new_name_list.append(new_name)
112
+ length_list.append(len(n_motion))
113
+ except:
114
+ print(line_split)
115
+ print(line_split[2], line_split[3], f_tag, to_tag, name)
116
+ # break
117
+
118
+ if flag:
119
+ data_dict[name] = {'motion': motion,
120
+ 'length': len(motion),
121
+ 'text': text_data}
122
+ new_name_list.append(name)
123
+ length_list.append(len(motion))
124
+ except Exception as e:
125
+ # print(e)
126
+ pass
127
+
128
+ name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))
129
+ self.mean = mean
130
+ self.std = std
131
+ self.length_arr = np.array(length_list)
132
+ self.data_dict = data_dict
133
+ self.name_list = name_list
134
+ self.reset_max_len(self.max_length)
135
+
136
+ def reset_max_len(self, length):
137
+ assert length <= self.max_motion_length
138
+ self.pointer = np.searchsorted(self.length_arr, length)
139
+ print("Pointer Pointing at %d"%self.pointer)
140
+ self.max_length = length
141
+
142
+ def inv_transform(self, data):
143
+ return data * self.std + self.mean
144
+
145
+ def forward_transform(self, data):
146
+ return (data - self.mean) / self.std
147
+
148
+ def __len__(self):
149
+ return len(self.data_dict) - self.pointer
150
+
151
+ def __getitem__(self, item):
152
+ idx = self.pointer + item
153
+ name = self.name_list[idx]
154
+ data = self.data_dict[name]
155
+ # data = self.data_dict[self.name_list[idx]]
156
+ motion, m_length, text_list = data['motion'], data['length'], data['text']
157
+ # Randomly select a caption
158
+ text_data = random.choice(text_list)
159
+ caption, tokens, caption_perb = text_data['caption'], text_data['tokens'], text_data['caption_perb']
160
+
161
+ if len(tokens) < self.max_text_len:
162
+ # pad with "unk"
163
+ tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
164
+ sent_len = len(tokens)
165
+ tokens = tokens + ['unk/OTHER'] * (self.max_text_len + 2 - sent_len)
166
+ else:
167
+ # crop
168
+ tokens = tokens[:self.max_text_len]
169
+ tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
170
+ sent_len = len(tokens)
171
+ pos_one_hots = []
172
+ word_embeddings = []
173
+ for token in tokens:
174
+ word_emb, pos_oh = self.w_vectorizer[token]
175
+ pos_one_hots.append(pos_oh[None, :])
176
+ word_embeddings.append(word_emb[None, :])
177
+ pos_one_hots = np.concatenate(pos_one_hots, axis=0)
178
+ word_embeddings = np.concatenate(word_embeddings, axis=0)
179
+
180
+ if self.unit_length < 10:
181
+ coin2 = np.random.choice(['single', 'single', 'double'])
182
+ else:
183
+ coin2 = 'single'
184
+
185
+ if coin2 == 'double':
186
+ m_length = (m_length // self.unit_length - 1) * self.unit_length
187
+ elif coin2 == 'single':
188
+ m_length = (m_length // self.unit_length) * self.unit_length
189
+ idx = random.randint(0, len(motion) - m_length)
190
+ motion = motion[idx:idx+m_length]
191
+
192
+ "Z Normalization"
193
+ motion = (motion - self.mean) / self.std
194
+
195
+ if m_length < self.max_motion_length:
196
+ motion = np.concatenate([motion,
197
+ np.zeros((self.max_motion_length - m_length, motion.shape[1]))
198
+ ], axis=0)
199
+
200
+ return word_embeddings, pos_one_hots, caption, caption_perb, sent_len, motion, m_length, '_'.join(tokens), name
201
+
202
+
203
+
204
+
205
+ def DATALoader(dataset_name, is_test,
206
+ batch_size, w_vectorizer,
207
+ num_workers = 8, unit_length = 4) :
208
+
209
+ val_loader = torch.utils.data.DataLoader(Text2MotionDataset(dataset_name, is_test, w_vectorizer, unit_length=unit_length),
210
+ batch_size,
211
+ shuffle = True,
212
+ num_workers=num_workers,
213
+ collate_fn=collate_fn,
214
+ drop_last = True)
215
+ return val_loader
216
+
217
+
218
+ from torch.utils.data.distributed import DistributedSampler
219
+
220
+ def DATALoader_ddp(dataset_name, is_test,
221
+ batch_size, w_vectorizer,
222
+ num_workers = 8, unit_length = 4):
223
+
224
+
225
+ val_dataset = Text2MotionDataset(dataset_name, is_test, w_vectorizer, unit_length=unit_length)
226
+
227
+ val_sampler = DistributedSampler(val_dataset)
228
+
229
+ val_loader = torch.utils.data.DataLoader(val_dataset,
230
+ batch_size,
231
+ num_workers=num_workers,
232
+ collate_fn=collate_fn,
233
+ drop_last = True,
234
+ sampler=val_sampler)
235
+ return val_loader
236
+
237
+
238
+ def cycle(iterable):
239
+ while True:
240
+ for x in iterable:
241
+ yield x
dataset/dataset_TM_train.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils import data
3
+ import numpy as np
4
+ from os.path import join as pjoin
5
+ import random
6
+ import codecs as cs
7
+ from tqdm import tqdm
8
+ import utils.paramUtil as paramUtil
9
+ from torch.utils.data._utils.collate import default_collate
10
+ import options.option_transformer as option_trans
11
+ args = option_trans.get_args_parser()
12
+
13
+ def collate_fn(batch):
14
+ batch.sort(key=lambda x: x[3], reverse=True)
15
+ return default_collate(batch)
16
+
17
+
18
+ '''For use of training text-2-motion generative model'''
19
+ class Text2MotionDataset(data.Dataset):
20
+ def __init__(self, dataset_name, feat_bias = 5, unit_length = 4, codebook_size = 1024, tokenizer_name=None,method=None):
21
+
22
+ self.max_length = 64
23
+ self.pointer = 0
24
+ self.dataset_name = dataset_name
25
+
26
+ self.unit_length = unit_length
27
+ # self.mot_start_idx = codebook_size
28
+ self.mot_end_idx = codebook_size
29
+ self.mot_pad_idx = codebook_size + 1
30
+ self.method=method
31
+ if dataset_name == 't2m':
32
+ self.data_root = './dataset/HumanML3D'
33
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
34
+ self.text_dir = pjoin(self.data_root, 'texts')
35
+ self.joints_num = 22
36
+ radius = 4
37
+ fps = 20
38
+ self.max_motion_length = 26 if unit_length == 8 else 51
39
+ dim_pose = 263
40
+ kinematic_chain = paramUtil.t2m_kinematic_chain
41
+ elif dataset_name == 'kit':
42
+ self.data_root = './dataset/KIT-ML'
43
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
44
+ self.text_dir = pjoin(self.data_root, 'texts')
45
+ self.joints_num = 21
46
+ radius = 240 * 8
47
+ fps = 12.5
48
+ dim_pose = 251
49
+ self.max_motion_length = 26 if unit_length == 8 else 51
50
+ kinematic_chain = paramUtil.kit_kinematic_chain
51
+
52
+ split_file = pjoin(self.data_root, 'train.txt')
53
+
54
+
55
+ id_list = []
56
+ with cs.open(split_file, 'r') as f:
57
+ for line in f.readlines():
58
+ id_list.append(line.strip())
59
+
60
+ new_name_list = []
61
+ data_dict = {}
62
+ if self.method=='adv':
63
+
64
+ pass
65
+ for name in tqdm(id_list):
66
+ try:
67
+ m_token_list = np.load(pjoin(self.data_root, tokenizer_name, '%s.npy'%name))
68
+
69
+ # Read text
70
+ with cs.open(pjoin(self.text_dir, name + '.txt')) as f:
71
+ text_data = []
72
+ flag = False
73
+ lines = f.readlines()
74
+
75
+ for line in lines:
76
+ try:
77
+ text_dict = {}
78
+ line_split = line.strip().split('#')
79
+ caption = line_split[0]
80
+ txt_perb = line_split[-1]
81
+ t_tokens = line_split[1].split(' ')
82
+ f_tag = float(line_split[2])
83
+ to_tag = float(line_split[3])
84
+ f_tag = 0.0 if np.isnan(f_tag) else f_tag
85
+ to_tag = 0.0 if np.isnan(to_tag) else to_tag
86
+
87
+ text_dict['caption'] = caption
88
+ text_dict['tokens'] = t_tokens
89
+ text_dict['caption_perb'] = txt_perb
90
+
91
+ if f_tag == 0.0 and to_tag == 0.0:
92
+ flag = True
93
+ text_data.append(text_dict)
94
+ else:
95
+ m_token_list_new = [tokens[int(f_tag*fps/unit_length) : int(to_tag*fps/unit_length)] for tokens in m_token_list if int(f_tag*fps/unit_length) < int(to_tag*fps/unit_length)]
96
+
97
+ if len(m_token_list_new) == 0:
98
+ continue
99
+ new_name = '%s_%f_%f'%(name, f_tag, to_tag)
100
+
101
+ data_dict[new_name] = {'m_token_list': m_token_list_new,
102
+ 'text':[text_dict]}
103
+ new_name_list.append(new_name)
104
+ except:
105
+ pass
106
+
107
+ if flag:
108
+ data_dict[name] = {'m_token_list': m_token_list,
109
+ 'text':text_data}
110
+ new_name_list.append(name)
111
+ except:
112
+ pass
113
+ self.data_dict = data_dict
114
+ self.name_list = new_name_list
115
+
116
+ def __len__(self):
117
+ return len(self.data_dict)
118
+
119
+ def __getitem__(self, item):
120
+ data = self.data_dict[self.name_list[item]]
121
+ m_token_list, text_list = data['m_token_list'], data['text']
122
+ m_tokens = random.choice(m_token_list)
123
+
124
+ text_data = random.choice(text_list)
125
+ caption,caption_perb= text_data['caption'], text_data['caption_perb']
126
+
127
+
128
+ coin = np.random.choice([False, False, True])
129
+ # print(len(m_tokens))
130
+ if coin:
131
+ # drop one token at the head or tail
132
+ coin2 = np.random.choice([True, False])
133
+ if coin2:
134
+ m_tokens = m_tokens[:-1]
135
+ else:
136
+ m_tokens = m_tokens[1:]
137
+ m_tokens_len = m_tokens.shape[0]
138
+
139
+ if m_tokens_len+1 < self.max_motion_length:
140
+ m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx, np.ones((self.max_motion_length-1-m_tokens_len), dtype=int) * self.mot_pad_idx], axis=0)
141
+ else:
142
+ m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx], axis=0)
143
+
144
+ return caption,caption_perb, m_tokens.reshape(-1), m_tokens_len
145
+
146
+
147
+
148
+
149
+ def DATALoader(dataset_name,
150
+ batch_size, codebook_size, tokenizer_name, unit_length=4,
151
+ num_workers = 0) :
152
+
153
+ train_loader = torch.utils.data.DataLoader(Text2MotionDataset(dataset_name, codebook_size = codebook_size, tokenizer_name = tokenizer_name, unit_length=unit_length),
154
+ batch_size,
155
+ shuffle=False,
156
+ num_workers=num_workers,
157
+ #collate_fn=collate_fn,
158
+ drop_last = True)
159
+
160
+
161
+ return train_loader
162
+
163
+
164
+ from torch.utils.data.distributed import DistributedSampler
165
+
166
+ def DATALoader_ddp(dataset_name,
167
+ batch_size, codebook_size, tokenizer_name, unit_length=4,
168
+ num_workers = 0) :
169
+
170
+ dataset = Text2MotionDataset(dataset_name, codebook_size = codebook_size, tokenizer_name = tokenizer_name, unit_length=unit_length)
171
+ train_sampler = DistributedSampler(dataset)
172
+ train_loader = torch.utils.data.DataLoader(dataset,
173
+ batch_size,
174
+ num_workers=num_workers,
175
+ #collate_fn=collate_fn,
176
+ drop_last = True,
177
+ sampler=train_sampler)
178
+
179
+
180
+ return train_loader
181
+
182
+
183
+ def cycle(iterable):
184
+ while True:
185
+ for x in iterable:
186
+ yield x
187
+
188
+
dataset/dataset_VQ.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils import data
3
+ import numpy as np
4
+ from os.path import join as pjoin
5
+ import random
6
+ import codecs as cs
7
+ from tqdm import tqdm
8
+
9
+
10
+
11
+ class VQMotionDataset(data.Dataset):
12
+ def __init__(self, dataset_name, window_size = 64, unit_length = 4):
13
+ self.window_size = window_size
14
+ self.unit_length = unit_length
15
+ self.dataset_name = dataset_name
16
+
17
+ if dataset_name == 't2m':
18
+ self.data_root = './dataset/HumanML3D'
19
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
20
+ self.text_dir = pjoin(self.data_root, 'texts')
21
+ self.joints_num = 22
22
+ self.max_motion_length = 196
23
+ self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
24
+
25
+ elif dataset_name == 'kit':
26
+ self.data_root = './dataset/KIT-ML'
27
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
28
+ self.text_dir = pjoin(self.data_root, 'texts')
29
+ self.joints_num = 21
30
+
31
+ self.max_motion_length = 196
32
+ self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
33
+
34
+ joints_num = self.joints_num
35
+
36
+ mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
37
+ std = np.load(pjoin(self.meta_dir, 'std.npy'))
38
+
39
+ split_file = pjoin(self.data_root, 'train.txt')
40
+
41
+ self.data = []
42
+ self.lengths = []
43
+ id_list = []
44
+ with cs.open(split_file, 'r') as f:
45
+ for line in f.readlines():
46
+ id_list.append(line.strip())
47
+
48
+ for name in tqdm(id_list):
49
+ try:
50
+ motion = np.load(pjoin(self.motion_dir, name + '.npy'))
51
+ if motion.shape[0] < self.window_size:
52
+ continue
53
+ self.lengths.append(motion.shape[0] - self.window_size)
54
+ self.data.append(motion)
55
+ except:
56
+ # Some motion may not exist in KIT dataset
57
+ pass
58
+
59
+
60
+ self.mean = mean
61
+ self.std = std
62
+ print("Total number of motions {}".format(len(self.data)))
63
+
64
+ def inv_transform(self, data):
65
+ return data * self.std + self.mean
66
+
67
+ def compute_sampling_prob(self) :
68
+
69
+ prob = np.array(self.lengths, dtype=np.float32)
70
+ prob /= np.sum(prob)
71
+ return prob
72
+
73
+ def __len__(self):
74
+ return len(self.data)
75
+
76
+ def __getitem__(self, item):
77
+ motion = self.data[item]
78
+
79
+ idx = random.randint(0, len(motion) - self.window_size)
80
+
81
+ motion = motion[idx:idx+self.window_size]
82
+ "Z Normalization"
83
+ motion = (motion - self.mean) / self.std
84
+
85
+ return motion
86
+
87
+ def DATALoader(dataset_name,
88
+ batch_size,
89
+ num_workers = 8,
90
+ window_size = 64,
91
+ unit_length = 4):
92
+
93
+ trainSet = VQMotionDataset(dataset_name, window_size=window_size, unit_length=unit_length)
94
+ prob = trainSet.compute_sampling_prob()
95
+ sampler = torch.utils.data.WeightedRandomSampler(prob, num_samples = len(trainSet) * 1000, replacement=True)
96
+ train_loader = torch.utils.data.DataLoader(trainSet,
97
+ batch_size,
98
+ shuffle=True,
99
+ #sampler=sampler,
100
+ num_workers=num_workers,
101
+ #collate_fn=collate_fn,
102
+ drop_last = True)
103
+
104
+ return train_loader
105
+
106
+ def cycle(iterable):
107
+ while True:
108
+ for x in iterable:
109
+ yield x
dataset/dataset_tokenize.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils import data
3
+ import numpy as np
4
+ from os.path import join as pjoin
5
+ import random
6
+ import codecs as cs
7
+ from tqdm import tqdm
8
+
9
+
10
+
11
+ class VQMotionDataset(data.Dataset):
12
+ def __init__(self, dataset_name, feat_bias = 5, window_size = 64, unit_length = 8):
13
+ self.window_size = window_size
14
+ self.unit_length = unit_length
15
+ self.feat_bias = feat_bias
16
+
17
+ self.dataset_name = dataset_name
18
+ min_motion_len = 40 if dataset_name =='t2m' else 24
19
+
20
+ if dataset_name == 't2m':
21
+ self.data_root = './dataset/HumanML3D'
22
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
23
+ self.text_dir = pjoin(self.data_root, 'texts')
24
+ self.joints_num = 22
25
+ radius = 4
26
+ fps = 20
27
+ self.max_motion_length = 196
28
+ dim_pose = 263
29
+ self.meta_dir = './checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
30
+ #kinematic_chain = paramUtil.t2m_kinematic_chain
31
+ elif dataset_name == 'kit':
32
+ self.data_root = './dataset/KIT-ML'
33
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
34
+ self.text_dir = pjoin(self.data_root, 'texts')
35
+ self.joints_num = 21
36
+ radius = 240 * 8
37
+ fps = 12.5
38
+ dim_pose = 251
39
+ self.max_motion_length = 196
40
+ self.meta_dir = './checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
41
+ #kinematic_chain = paramUtil.kit_kinematic_chain
42
+
43
+ joints_num = self.joints_num
44
+
45
+ mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
46
+ std = np.load(pjoin(self.meta_dir, 'std.npy'))
47
+
48
+ split_file = pjoin(self.data_root, 'train.txt')
49
+
50
+ data_dict = {}
51
+ id_list = []
52
+ with cs.open(split_file, 'r') as f:
53
+ for line in f.readlines():
54
+ id_list.append(line.strip())
55
+
56
+ new_name_list = []
57
+ length_list = []
58
+ for name in tqdm(id_list):
59
+ try:
60
+ motion = np.load(pjoin(self.motion_dir, name + '.npy'))
61
+ if (len(motion)) < min_motion_len or (len(motion) >= 200):
62
+
63
+ continue
64
+
65
+ data_dict[name] = {'motion': motion,
66
+ 'length': len(motion),
67
+ 'name': name}
68
+ new_name_list.append(name)
69
+ length_list.append(len(motion))
70
+ except:
71
+ # Some motion may not exist in KIT dataset
72
+ pass
73
+
74
+
75
+ self.mean = mean
76
+ self.std = std
77
+ self.length_arr = np.array(length_list)
78
+ self.data_dict = data_dict
79
+ self.name_list = new_name_list
80
+
81
+ def inv_transform(self, data):
82
+ return data * self.std + self.mean
83
+
84
+ def __len__(self):
85
+ return len(self.data_dict)
86
+
87
+ def __getitem__(self, item):
88
+ name = self.name_list[item]
89
+ data = self.data_dict[name]
90
+ motion, m_length = data['motion'], data['length']
91
+
92
+ m_length = (m_length // self.unit_length) * self.unit_length
93
+
94
+ idx = random.randint(0, len(motion) - m_length)
95
+ motion = motion[idx:idx+m_length]
96
+
97
+ "Z Normalization"
98
+ motion = (motion - self.mean) / self.std
99
+
100
+ return motion, name
101
+
102
+ def DATALoader(dataset_name,
103
+ batch_size = 4,
104
+ num_workers = 8, unit_length = 4) :
105
+
106
+ train_loader = torch.utils.data.DataLoader(VQMotionDataset(dataset_name, unit_length=unit_length),
107
+ batch_size,
108
+ shuffle=True,
109
+ num_workers=num_workers,
110
+ #collate_fn=collate_fn,
111
+ drop_last = True)
112
+
113
+ return train_loader
114
+
115
+ from torch.utils.data.distributed import DistributedSampler
116
+
117
+ # def DATALoader_ddp(dataset_name,
118
+ # batch_size = 4,
119
+ # num_workers = 8, unit_length = 4) :
120
+
121
+
122
+ # dataset = VQMotionDataset(dataset_name, unit_length=unit_length)
123
+ # train_sampler = DistributedSampler(dataset)
124
+
125
+ # train_loader = torch.utils.data.DataLoader(dataset,
126
+ # batch_size=batch_size,
127
+ # shuffle=False,
128
+ # num_workers=num_workers,
129
+ # sampler=train_sampler)
130
+
131
+ # return train_loader
132
+
133
+ def cycle(iterable):
134
+ while True:
135
+ for x in iterable:
136
+ yield x
dataset/prepare/download_extractor.sh ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ rm -rf checkpoints
2
+ mkdir checkpoints
3
+ cd checkpoints
4
+ echo -e "Downloading extractors"
5
+ gdown --fuzzy https://drive.google.com/file/d/1o7RTDQcToJjTm9_mNWTyzvZvjTWpZfug/view
6
+ gdown --fuzzy https://drive.google.com/file/d/1KNU8CsMAnxFrwopKBBkC8jEULGLPBHQp/view
7
+
8
+
9
+ unzip t2m.zip
10
+ unzip kit.zip
11
+
12
+ echo -e "Cleaning\n"
13
+ rm t2m.zip
14
+ rm kit.zip
15
+ echo -e "Downloading done!"
dataset/prepare/download_glove.sh ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ echo -e "Downloading glove (in use by the evaluators)"
2
+ gdown --fuzzy https://drive.google.com/file/d/1bCeS6Sh_mLVTebxIgiUHgdPrroW06mb6/view?usp=sharing
3
+ rm -rf glove
4
+
5
+ unzip glove.zip
6
+ echo -e "Cleaning\n"
7
+ rm glove.zip
8
+
9
+ echo -e "Downloading done!"
dataset/prepare/download_model.sh ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ mkdir -p pretrained
3
+ cd pretrained/
4
+
5
+ echo -e "The pretrained model files will be stored in the 'pretrained' folder\n"
6
+ gdown 1LaOvwypF-jM2Axnq5dc-Iuvv3w_G-WDE
7
+
8
+ unzip VQTrans_pretrained.zip
9
+ echo -e "Cleaning\n"
10
+ rm VQTrans_pretrained.zip
11
+
12
+ echo -e "Downloading done!"
dataset/prepare/download_smpl.sh ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ mkdir -p body_models
3
+ cd body_models/
4
+
5
+ echo -e "The smpl files will be stored in the 'body_models/smpl/' folder\n"
6
+ gdown 1INYlGA76ak_cKGzvpOV2Pe6RkYTlXTW2
7
+ rm -rf smpl
8
+
9
+ unzip smpl.zip
10
+ echo -e "Cleaning\n"
11
+ rm smpl.zip
12
+
13
+ echo -e "Downloading done!"
models/__pycache__/encdec.cpython-38.pyc ADDED
Binary file (2.08 kB). View file
 
models/__pycache__/encdec.cpython-39.pyc ADDED
Binary file (2.09 kB). View file
 
models/__pycache__/evaluator_wrapper.cpython-38.pyc ADDED
Binary file (2.9 kB). View file
 
models/__pycache__/evaluator_wrapper.cpython-39.pyc ADDED
Binary file (2.96 kB). View file
 
models/__pycache__/modules.cpython-38.pyc ADDED
Binary file (3.54 kB). View file
 
models/__pycache__/modules.cpython-39.pyc ADDED
Binary file (3.57 kB). View file
 
models/__pycache__/pos_encoding.cpython-38.pyc ADDED
Binary file (1.75 kB). View file
 
models/__pycache__/pos_encoding.cpython-39.pyc ADDED
Binary file (1.75 kB). View file
 
models/__pycache__/quantize_cnn.cpython-38.pyc ADDED
Binary file (10.6 kB). View file
 
models/__pycache__/quantize_cnn.cpython-39.pyc ADDED
Binary file (10.6 kB). View file
 
models/__pycache__/resnet.cpython-38.pyc ADDED
Binary file (2.78 kB). View file
 
models/__pycache__/resnet.cpython-39.pyc ADDED
Binary file (2.78 kB). View file
 
models/__pycache__/rotation2xyz.cpython-38.pyc ADDED
Binary file (2.39 kB). View file
 
models/__pycache__/smpl.cpython-38.pyc ADDED
Binary file (3.37 kB). View file
 
models/__pycache__/t2m_trans.cpython-38.pyc ADDED
Binary file (7.66 kB). View file
 
models/__pycache__/t2m_trans.cpython-39.pyc ADDED
Binary file (7.58 kB). View file
 
models/__pycache__/vqvae.cpython-38.pyc ADDED
Binary file (3.46 kB). View file
 
models/__pycache__/vqvae.cpython-39.pyc ADDED
Binary file (3.47 kB). View file
 
models/encdec.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from models.resnet import Resnet1D
3
+
4
+ class Encoder(nn.Module):
5
+ def __init__(self,
6
+ input_emb_width = 3,
7
+ output_emb_width = 512,
8
+ down_t = 3,
9
+ stride_t = 2,
10
+ width = 512,
11
+ depth = 3,
12
+ dilation_growth_rate = 3,
13
+ activation='relu',
14
+ norm=None):
15
+ super().__init__()
16
+
17
+ blocks = []
18
+ filter_t, pad_t = stride_t * 2, stride_t // 2
19
+ blocks.append(nn.Conv1d(input_emb_width, width, 3, 1, 1))
20
+ blocks.append(nn.ReLU())
21
+
22
+ for i in range(down_t):
23
+ input_dim = width
24
+ block = nn.Sequential(
25
+ nn.Conv1d(input_dim, width, filter_t, stride_t, pad_t),
26
+ Resnet1D(width, depth, dilation_growth_rate, activation=activation, norm=norm),
27
+ )
28
+ blocks.append(block)
29
+ blocks.append(nn.Conv1d(width, output_emb_width, 3, 1, 1))
30
+ self.model = nn.Sequential(*blocks)
31
+
32
+ def forward(self, x):
33
+ return self.model(x)
34
+
35
+ class Decoder(nn.Module):
36
+ def __init__(self,
37
+ input_emb_width = 3,
38
+ output_emb_width = 512,
39
+ down_t = 3,
40
+ stride_t = 2,
41
+ width = 512,
42
+ depth = 3,
43
+ dilation_growth_rate = 3,
44
+ activation='relu',
45
+ norm=None):
46
+ super().__init__()
47
+ blocks = []
48
+
49
+ filter_t, pad_t = stride_t * 2, stride_t // 2
50
+ blocks.append(nn.Conv1d(output_emb_width, width, 3, 1, 1))
51
+ blocks.append(nn.ReLU())
52
+ for i in range(down_t):
53
+ out_dim = width
54
+ block = nn.Sequential(
55
+ Resnet1D(width, depth, dilation_growth_rate, reverse_dilation=True, activation=activation, norm=norm),
56
+ nn.Upsample(scale_factor=2, mode='nearest'),
57
+ nn.Conv1d(width, out_dim, 3, 1, 1)
58
+ )
59
+ blocks.append(block)
60
+ blocks.append(nn.Conv1d(width, width, 3, 1, 1))
61
+ blocks.append(nn.ReLU())
62
+ blocks.append(nn.Conv1d(width, input_emb_width, 3, 1, 1))
63
+ self.model = nn.Sequential(*blocks)
64
+
65
+ def forward(self, x):
66
+ return self.model(x)
67
+
models/evaluator_wrapper.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ from os.path import join as pjoin
4
+ import numpy as np
5
+ from models.modules import MovementConvEncoder, TextEncoderBiGRUCo, MotionEncoderBiGRUCo
6
+ from utils.word_vectorizer import POS_enumerator
7
+
8
+ def build_models(opt):
9
+ movement_enc = MovementConvEncoder(opt.dim_pose-4, opt.dim_movement_enc_hidden, opt.dim_movement_latent)
10
+ text_enc = TextEncoderBiGRUCo(word_size=opt.dim_word,
11
+ pos_size=opt.dim_pos_ohot,
12
+ hidden_size=opt.dim_text_hidden,
13
+ output_size=opt.dim_coemb_hidden,
14
+ device=opt.device)
15
+
16
+ motion_enc = MotionEncoderBiGRUCo(input_size=opt.dim_movement_latent,
17
+ hidden_size=opt.dim_motion_hidden,
18
+ output_size=opt.dim_coemb_hidden,
19
+ device=opt.device)
20
+
21
+ checkpoint = torch.load(pjoin(opt.checkpoints_dir, opt.dataset_name, 'text_mot_match', 'model', 'finest.tar'),
22
+ map_location=opt.device)
23
+ movement_enc.load_state_dict(checkpoint['movement_encoder'])
24
+ text_enc.load_state_dict(checkpoint['text_encoder'])
25
+ motion_enc.load_state_dict(checkpoint['motion_encoder'])
26
+ print('Loading Evaluation Model Wrapper (Epoch %d) Completed!!' % (checkpoint['epoch']))
27
+ return text_enc, motion_enc, movement_enc
28
+
29
+
30
+ class EvaluatorModelWrapper(object):
31
+
32
+ def __init__(self, opt):
33
+
34
+ if opt.dataset_name == 't2m':
35
+ opt.dim_pose = 263
36
+ elif opt.dataset_name == 'kit':
37
+ opt.dim_pose = 251
38
+ else:
39
+ raise KeyError('Dataset not Recognized!!!')
40
+
41
+ opt.dim_word = 300
42
+ opt.max_motion_length = 196
43
+ opt.dim_pos_ohot = len(POS_enumerator)
44
+ opt.dim_motion_hidden = 1024
45
+ opt.max_text_len = 20
46
+ opt.dim_text_hidden = 512
47
+ opt.dim_coemb_hidden = 512
48
+
49
+ # print(opt)
50
+
51
+ self.text_encoder, self.motion_encoder, self.movement_encoder = build_models(opt)
52
+ self.opt = opt
53
+ self.device = opt.device
54
+
55
+ self.text_encoder.to(opt.device)
56
+ self.motion_encoder.to(opt.device)
57
+ self.movement_encoder.to(opt.device)
58
+
59
+ self.text_encoder.eval()
60
+ self.motion_encoder.eval()
61
+ self.movement_encoder.eval()
62
+
63
+ # Please note that the results does not following the order of inputs
64
+ def get_co_embeddings(self, word_embs, pos_ohot, cap_lens, motions, m_lens):
65
+ with torch.no_grad():
66
+ word_embs = word_embs.detach().to(self.device).float()
67
+ pos_ohot = pos_ohot.detach().to(self.device).float()
68
+ motions = motions.detach().to(self.device).float()
69
+
70
+ '''Movement Encoding'''
71
+ movements = self.movement_encoder(motions[..., :-4]).detach()
72
+ m_lens = m_lens // self.opt.unit_length
73
+ motion_embedding = self.motion_encoder(movements, m_lens)
74
+
75
+ '''Text Encoding'''
76
+ text_embedding = self.text_encoder(word_embs, pos_ohot, cap_lens)
77
+ return text_embedding, motion_embedding
78
+
79
+ # Please note that the results does not following the order of inputs
80
+ def get_motion_embeddings(self, motions, m_lens):
81
+ with torch.no_grad():
82
+ motions = motions.detach().to(self.device).float()
83
+
84
+ align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
85
+ motions = motions[align_idx]
86
+ m_lens = m_lens[align_idx]
87
+
88
+ '''Movement Encoding'''
89
+ movements = self.movement_encoder(motions[..., :-4]).detach()
90
+ m_lens = m_lens // self.opt.unit_length
91
+ motion_embedding = self.motion_encoder(movements, m_lens)
92
+ return motion_embedding
models/modules.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn.utils.rnn import pack_padded_sequence
4
+
5
+ def init_weight(m):
6
+ if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
7
+ nn.init.xavier_normal_(m.weight)
8
+ # m.bias.data.fill_(0.01)
9
+ if m.bias is not None:
10
+ nn.init.constant_(m.bias, 0)
11
+
12
+
13
+ class MovementConvEncoder(nn.Module):
14
+ def __init__(self, input_size, hidden_size, output_size):
15
+ super(MovementConvEncoder, self).__init__()
16
+ self.main = nn.Sequential(
17
+ nn.Conv1d(input_size, hidden_size, 4, 2, 1),
18
+ nn.Dropout(0.2, inplace=True),
19
+ nn.LeakyReLU(0.2, inplace=True),
20
+ nn.Conv1d(hidden_size, output_size, 4, 2, 1),
21
+ nn.Dropout(0.2, inplace=True),
22
+ nn.LeakyReLU(0.2, inplace=True),
23
+ )
24
+ self.out_net = nn.Linear(output_size, output_size)
25
+ self.main.apply(init_weight)
26
+ self.out_net.apply(init_weight)
27
+
28
+ def forward(self, inputs):
29
+ inputs = inputs.permute(0, 2, 1)
30
+ outputs = self.main(inputs).permute(0, 2, 1)
31
+ # print(outputs.shape)
32
+ return self.out_net(outputs)
33
+
34
+
35
+
36
+ class TextEncoderBiGRUCo(nn.Module):
37
+ def __init__(self, word_size, pos_size, hidden_size, output_size, device):
38
+ super(TextEncoderBiGRUCo, self).__init__()
39
+ self.device = device
40
+
41
+ self.pos_emb = nn.Linear(pos_size, word_size)
42
+ self.input_emb = nn.Linear(word_size, hidden_size)
43
+ self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
44
+ self.output_net = nn.Sequential(
45
+ nn.Linear(hidden_size * 2, hidden_size),
46
+ nn.LayerNorm(hidden_size),
47
+ nn.LeakyReLU(0.2, inplace=True),
48
+ nn.Linear(hidden_size, output_size)
49
+ )
50
+
51
+ self.input_emb.apply(init_weight)
52
+ self.pos_emb.apply(init_weight)
53
+ self.output_net.apply(init_weight)
54
+ self.hidden_size = hidden_size
55
+ self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
56
+
57
+ # input(batch_size, seq_len, dim)
58
+ def forward(self, word_embs, pos_onehot, cap_lens):
59
+ num_samples = word_embs.shape[0]
60
+
61
+ pos_embs = self.pos_emb(pos_onehot)
62
+ inputs = word_embs + pos_embs
63
+ input_embs = self.input_emb(inputs)
64
+ hidden = self.hidden.repeat(1, num_samples, 1)
65
+
66
+ cap_lens = cap_lens.data.tolist()
67
+ emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True,enforce_sorted=False)
68
+
69
+ gru_seq, gru_last = self.gru(emb, hidden)
70
+
71
+ gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
72
+
73
+ return self.output_net(gru_last)
74
+
75
+
76
+ class MotionEncoderBiGRUCo(nn.Module):
77
+ def __init__(self, input_size, hidden_size, output_size, device):
78
+ super(MotionEncoderBiGRUCo, self).__init__()
79
+ self.device = device
80
+
81
+ self.input_emb = nn.Linear(input_size, hidden_size)
82
+ self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
83
+ self.output_net = nn.Sequential(
84
+ nn.Linear(hidden_size*2, hidden_size),
85
+ nn.LayerNorm(hidden_size),
86
+ nn.LeakyReLU(0.2, inplace=True),
87
+ nn.Linear(hidden_size, output_size)
88
+ )
89
+
90
+ self.input_emb.apply(init_weight)
91
+ self.output_net.apply(init_weight)
92
+ self.hidden_size = hidden_size
93
+ self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
94
+
95
+ # input(batch_size, seq_len, dim)
96
+ def forward(self, inputs, m_lens):
97
+ num_samples = inputs.shape[0]
98
+
99
+ input_embs = self.input_emb(inputs)
100
+ hidden = self.hidden.repeat(1, num_samples, 1)
101
+
102
+ cap_lens = m_lens.data.tolist()
103
+ emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True, enforce_sorted=False)
104
+
105
+ gru_seq, gru_last = self.gru(emb, hidden)
106
+
107
+ gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
108
+
109
+ return self.output_net(gru_last)
models/pos_encoding.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Various positional encodings for the transformer.
3
+ """
4
+ import math
5
+ import torch
6
+ from torch import nn
7
+
8
+ def PE1d_sincos(seq_length, dim):
9
+ """
10
+ :param d_model: dimension of the model
11
+ :param length: length of positions
12
+ :return: length*d_model position matrix
13
+ """
14
+ if dim % 2 != 0:
15
+ raise ValueError("Cannot use sin/cos positional encoding with "
16
+ "odd dim (got dim={:d})".format(dim))
17
+ pe = torch.zeros(seq_length, dim)
18
+ position = torch.arange(0, seq_length).unsqueeze(1)
19
+ div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.float) *
20
+ -(math.log(10000.0) / dim)))
21
+ pe[:, 0::2] = torch.sin(position.float() * div_term)
22
+ pe[:, 1::2] = torch.cos(position.float() * div_term)
23
+
24
+ return pe.unsqueeze(1)
25
+
26
+
27
+ class PositionEmbedding(nn.Module):
28
+ """
29
+ Absolute pos embedding (standard), learned.
30
+ """
31
+ def __init__(self, seq_length, dim, dropout, grad=False):
32
+ super().__init__()
33
+ self.embed = nn.Parameter(data=PE1d_sincos(seq_length, dim), requires_grad=grad)
34
+ self.dropout = nn.Dropout(p=dropout)
35
+
36
+ def forward(self, x):
37
+ # x.shape: bs, seq_len, feat_dim
38
+ l = x.shape[1]
39
+ x = x.permute(1, 0, 2) + self.embed[:l].expand(x.permute(1, 0, 2).shape)
40
+ x = self.dropout(x.permute(1, 0, 2))
41
+ return x
42
+
43
+
models/quantize_cnn.py ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ class QuantizeEMAReset(nn.Module):
7
+ def __init__(self, nb_code, code_dim, args):
8
+ super().__init__()
9
+ self.nb_code = nb_code
10
+ self.code_dim = code_dim
11
+ self.mu = args.mu
12
+ self.reset_codebook()
13
+
14
+ def reset_codebook(self):
15
+ self.init = False
16
+ self.code_sum = None
17
+ self.code_count = None
18
+ self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim).cuda())
19
+
20
+ def _tile(self, x):
21
+ nb_code_x, code_dim = x.shape
22
+ if nb_code_x < self.nb_code:
23
+ n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
24
+ std = 0.01 / np.sqrt(code_dim)
25
+ out = x.repeat(n_repeats, 1)
26
+ out = out + torch.randn_like(out) * std
27
+ else :
28
+ out = x
29
+ return out
30
+
31
+ def init_codebook(self, x):
32
+ out = self._tile(x)
33
+ self.codebook = out[:self.nb_code]
34
+ self.code_sum = self.codebook.clone()
35
+ self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
36
+ self.init = True
37
+
38
+ @torch.no_grad()
39
+ def compute_perplexity(self, code_idx) :
40
+ # Calculate new centres
41
+ code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
42
+ code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
43
+
44
+ code_count = code_onehot.sum(dim=-1) # nb_code
45
+ prob = code_count / torch.sum(code_count)
46
+ perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
47
+ return perplexity
48
+
49
+ @torch.no_grad()
50
+ def update_codebook(self, x, code_idx):
51
+
52
+ code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
53
+ code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
54
+
55
+ code_sum = torch.matmul(code_onehot, x) # nb_code, w
56
+ code_count = code_onehot.sum(dim=-1) # nb_code
57
+
58
+ out = self._tile(x)
59
+ code_rand = out[:self.nb_code]
60
+
61
+ # Update centres
62
+ self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum # w, nb_code
63
+ self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count # nb_code
64
+
65
+ usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
66
+ code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
67
+
68
+ self.codebook = usage * code_update + (1 - usage) * code_rand
69
+ prob = code_count / torch.sum(code_count)
70
+ perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
71
+
72
+
73
+ return perplexity
74
+
75
+ def preprocess(self, x):
76
+ # NCT -> NTC -> [NT, C]
77
+ x = x.permute(0, 2, 1).contiguous()
78
+ x = x.view(-1, x.shape[-1])
79
+ return x
80
+
81
+ def quantize(self, x):
82
+ # Calculate latent code x_l
83
+ k_w = self.codebook.t()
84
+ distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
85
+ keepdim=True) # (N * L, b)
86
+ _, code_idx = torch.min(distance, dim=-1)
87
+ return code_idx
88
+
89
+ def dequantize(self, code_idx):
90
+ x = F.embedding(code_idx, self.codebook)
91
+ return x
92
+
93
+
94
+ def forward(self, x):
95
+ N, width, T = x.shape
96
+
97
+ # Preprocess
98
+ x = self.preprocess(x)
99
+
100
+ # Init codebook if not inited
101
+ if self.training and not self.init:
102
+ self.init_codebook(x)
103
+
104
+ # quantize and dequantize through bottleneck
105
+ code_idx = self.quantize(x)
106
+ x_d = self.dequantize(code_idx)
107
+
108
+ # Update embeddings
109
+ if self.training:
110
+ perplexity = self.update_codebook(x, code_idx)
111
+ else :
112
+ perplexity = self.compute_perplexity(code_idx)
113
+
114
+ # Loss
115
+ commit_loss = F.mse_loss(x, x_d.detach())
116
+
117
+ # Passthrough
118
+ x_d = x + (x_d - x).detach()
119
+
120
+ # Postprocess
121
+ x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
122
+
123
+ return x_d, commit_loss, perplexity
124
+
125
+
126
+
127
+ class Quantizer(nn.Module):
128
+ def __init__(self, n_e, e_dim, beta):
129
+ super(Quantizer, self).__init__()
130
+
131
+ self.e_dim = e_dim
132
+ self.n_e = n_e
133
+ self.beta = beta
134
+
135
+ self.embedding = nn.Embedding(self.n_e, self.e_dim)
136
+ self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
137
+
138
+ def forward(self, z):
139
+
140
+ N, width, T = z.shape
141
+ z = self.preprocess(z)
142
+ assert z.shape[-1] == self.e_dim
143
+ z_flattened = z.contiguous().view(-1, self.e_dim)
144
+
145
+ # B x V
146
+ d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
147
+ torch.sum(self.embedding.weight**2, dim=1) - 2 * \
148
+ torch.matmul(z_flattened, self.embedding.weight.t())
149
+ # B x 1
150
+ min_encoding_indices = torch.argmin(d, dim=1)
151
+ z_q = self.embedding(min_encoding_indices).view(z.shape)
152
+
153
+ # compute loss for embedding
154
+ loss = torch.mean((z_q - z.detach())**2) + self.beta * \
155
+ torch.mean((z_q.detach() - z)**2)
156
+
157
+ # preserve gradients
158
+ z_q = z + (z_q - z).detach()
159
+ z_q = z_q.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
160
+
161
+ min_encodings = F.one_hot(min_encoding_indices, self.n_e).type(z.dtype)
162
+ e_mean = torch.mean(min_encodings, dim=0)
163
+ perplexity = torch.exp(-torch.sum(e_mean*torch.log(e_mean + 1e-10)))
164
+ return z_q, loss, perplexity
165
+
166
+ def quantize(self, z):
167
+
168
+ assert z.shape[-1] == self.e_dim
169
+
170
+ # B x V
171
+ d = torch.sum(z ** 2, dim=1, keepdim=True) + \
172
+ torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \
173
+ torch.matmul(z, self.embedding.weight.t())
174
+ # B x 1
175
+ min_encoding_indices = torch.argmin(d, dim=1)
176
+ return min_encoding_indices
177
+
178
+ def dequantize(self, indices):
179
+
180
+ index_flattened = indices.view(-1)
181
+ z_q = self.embedding(index_flattened)
182
+ z_q = z_q.view(indices.shape + (self.e_dim, )).contiguous()
183
+ return z_q
184
+
185
+ def preprocess(self, x):
186
+ # NCT -> NTC -> [NT, C]
187
+ x = x.permute(0, 2, 1).contiguous()
188
+ x = x.view(-1, x.shape[-1])
189
+ return x
190
+
191
+
192
+
193
+ class QuantizeReset(nn.Module):
194
+ def __init__(self, nb_code, code_dim, args):
195
+ super().__init__()
196
+ self.nb_code = nb_code
197
+ self.code_dim = code_dim
198
+ self.reset_codebook()
199
+ self.codebook = nn.Parameter(torch.randn(nb_code, code_dim))
200
+
201
+ def reset_codebook(self):
202
+ self.init = False
203
+ self.code_count = None
204
+
205
+ def _tile(self, x):
206
+ nb_code_x, code_dim = x.shape
207
+ if nb_code_x < self.nb_code:
208
+ n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
209
+ std = 0.01 / np.sqrt(code_dim)
210
+ out = x.repeat(n_repeats, 1)
211
+ out = out + torch.randn_like(out) * std
212
+ else :
213
+ out = x
214
+ return out
215
+
216
+ def init_codebook(self, x):
217
+ out = self._tile(x)
218
+ self.codebook = nn.Parameter(out[:self.nb_code])
219
+ self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
220
+ self.init = True
221
+
222
+ @torch.no_grad()
223
+ def compute_perplexity(self, code_idx) :
224
+ # Calculate new centres
225
+ code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
226
+ code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
227
+
228
+ code_count = code_onehot.sum(dim=-1) # nb_code
229
+ prob = code_count / torch.sum(code_count)
230
+ perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
231
+ return perplexity
232
+
233
+ def update_codebook(self, x, code_idx):
234
+
235
+ code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
236
+ code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
237
+
238
+ code_count = code_onehot.sum(dim=-1) # nb_code
239
+
240
+ out = self._tile(x)
241
+ code_rand = out[:self.nb_code]
242
+
243
+ # Update centres
244
+ self.code_count = code_count # nb_code
245
+ usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
246
+
247
+ self.codebook.data = usage * self.codebook.data + (1 - usage) * code_rand
248
+ prob = code_count / torch.sum(code_count)
249
+ perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
250
+
251
+
252
+ return perplexity
253
+
254
+ def preprocess(self, x):
255
+ # NCT -> NTC -> [NT, C]
256
+ x = x.permute(0, 2, 1).contiguous()
257
+ x = x.view(-1, x.shape[-1])
258
+ return x
259
+
260
+ def quantize(self, x):
261
+ # Calculate latent code x_l
262
+ k_w = self.codebook.t()
263
+ distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
264
+ keepdim=True) # (N * L, b)
265
+ _, code_idx = torch.min(distance, dim=-1)
266
+ return code_idx
267
+
268
+ def dequantize(self, code_idx):
269
+ x = F.embedding(code_idx, self.codebook)
270
+ return x
271
+
272
+
273
+ def forward(self, x):
274
+ N, width, T = x.shape
275
+ # Preprocess
276
+ x = self.preprocess(x)
277
+ # Init codebook if not inited
278
+ if self.training and not self.init:
279
+ self.init_codebook(x)
280
+ # quantize and dequantize through bottleneck
281
+ code_idx = self.quantize(x)
282
+ x_d = self.dequantize(code_idx)
283
+ # Update embeddings
284
+ if self.training:
285
+ perplexity = self.update_codebook(x, code_idx)
286
+ else :
287
+ perplexity = self.compute_perplexity(code_idx)
288
+
289
+ # Loss
290
+ commit_loss = F.mse_loss(x, x_d.detach())
291
+
292
+ # Passthrough
293
+ x_d = x + (x_d - x).detach()
294
+
295
+ # Postprocess
296
+ x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
297
+
298
+ return x_d, commit_loss, perplexity
299
+
300
+
301
+ class QuantizeEMA(nn.Module):
302
+ def __init__(self, nb_code, code_dim, args):
303
+ super().__init__()
304
+ self.nb_code = nb_code
305
+ self.code_dim = code_dim
306
+ self.mu = 0.99
307
+ self.reset_codebook()
308
+
309
+ def reset_codebook(self):
310
+ self.init = False
311
+ self.code_sum = None
312
+ self.code_count = None
313
+ self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim).cuda())
314
+
315
+ def _tile(self, x):
316
+ nb_code_x, code_dim = x.shape
317
+ if nb_code_x < self.nb_code:
318
+ n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
319
+ std = 0.01 / np.sqrt(code_dim)
320
+ out = x.repeat(n_repeats, 1)
321
+ out = out + torch.randn_like(out) * std
322
+ else :
323
+ out = x
324
+ return out
325
+
326
+ def init_codebook(self, x):
327
+ out = self._tile(x)
328
+ self.codebook = out[:self.nb_code]
329
+ self.code_sum = self.codebook.clone()
330
+ self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
331
+ self.init = True
332
+
333
+ @torch.no_grad()
334
+ def compute_perplexity(self, code_idx) :
335
+ # Calculate new centres
336
+ code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
337
+ code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
338
+
339
+ code_count = code_onehot.sum(dim=-1) # nb_code
340
+ prob = code_count / torch.sum(code_count)
341
+ perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
342
+ return perplexity
343
+
344
+ @torch.no_grad()
345
+ def update_codebook(self, x, code_idx):
346
+
347
+ code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
348
+ code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
349
+
350
+ code_sum = torch.matmul(code_onehot, x) # nb_code, w
351
+ code_count = code_onehot.sum(dim=-1) # nb_code
352
+
353
+ # Update centres
354
+ self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum # w, nb_code
355
+ self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count # nb_code
356
+
357
+ code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
358
+
359
+ self.codebook = code_update
360
+ prob = code_count / torch.sum(code_count)
361
+ perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
362
+
363
+ return perplexity
364
+
365
+ def preprocess(self, x):
366
+ # NCT -> NTC -> [NT, C]
367
+ x = x.permute(0, 2, 1).contiguous()
368
+ x = x.view(-1, x.shape[-1])
369
+ return x
370
+
371
+ def quantize(self, x):
372
+ # Calculate latent code x_l
373
+ k_w = self.codebook.t()
374
+ distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
375
+ keepdim=True) # (N * L, b)
376
+ _, code_idx = torch.min(distance, dim=-1)
377
+ return code_idx
378
+
379
+ def dequantize(self, code_idx):
380
+ x = F.embedding(code_idx, self.codebook)
381
+ return x
382
+
383
+
384
+ def forward(self, x):
385
+ N, width, T = x.shape
386
+
387
+ # Preprocess
388
+ x = self.preprocess(x)
389
+
390
+ # Init codebook if not inited
391
+ if self.training and not self.init:
392
+ self.init_codebook(x)
393
+
394
+ # quantize and dequantize through bottleneck
395
+ code_idx = self.quantize(x)
396
+ x_d = self.dequantize(code_idx)
397
+
398
+ # Update embeddings
399
+ if self.training:
400
+ perplexity = self.update_codebook(x, code_idx)
401
+ else :
402
+ perplexity = self.compute_perplexity(code_idx)
403
+
404
+ # Loss
405
+ commit_loss = F.mse_loss(x, x_d.detach())
406
+
407
+ # Passthrough
408
+ x_d = x + (x_d - x).detach()
409
+
410
+ # Postprocess
411
+ x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
412
+
413
+ return x_d, commit_loss, perplexity
models/resnet.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+
4
+ class nonlinearity(nn.Module):
5
+ def __init__(self):
6
+ super().__init__()
7
+
8
+ def forward(self, x):
9
+ # swish
10
+ return x * torch.sigmoid(x)
11
+
12
+ class ResConv1DBlock(nn.Module):
13
+ def __init__(self, n_in, n_state, dilation=1, activation='silu', norm=None, dropout=None):
14
+ super().__init__()
15
+ padding = dilation
16
+ self.norm = norm
17
+ if norm == "LN":
18
+ self.norm1 = nn.LayerNorm(n_in)
19
+ self.norm2 = nn.LayerNorm(n_in)
20
+ elif norm == "GN":
21
+ self.norm1 = nn.GroupNorm(num_groups=32, num_channels=n_in, eps=1e-6, affine=True)
22
+ self.norm2 = nn.GroupNorm(num_groups=32, num_channels=n_in, eps=1e-6, affine=True)
23
+ elif norm == "BN":
24
+ self.norm1 = nn.BatchNorm1d(num_features=n_in, eps=1e-6, affine=True)
25
+ self.norm2 = nn.BatchNorm1d(num_features=n_in, eps=1e-6, affine=True)
26
+
27
+ else:
28
+ self.norm1 = nn.Identity()
29
+ self.norm2 = nn.Identity()
30
+
31
+ if activation == "relu":
32
+ self.activation1 = nn.ReLU()
33
+ self.activation2 = nn.ReLU()
34
+
35
+ elif activation == "silu":
36
+ self.activation1 = nonlinearity()
37
+ self.activation2 = nonlinearity()
38
+
39
+ elif activation == "gelu":
40
+ self.activation1 = nn.GELU()
41
+ self.activation2 = nn.GELU()
42
+
43
+
44
+
45
+ self.conv1 = nn.Conv1d(n_in, n_state, 3, 1, padding, dilation)
46
+ self.conv2 = nn.Conv1d(n_state, n_in, 1, 1, 0,)
47
+
48
+
49
+ def forward(self, x):
50
+ x_orig = x
51
+ if self.norm == "LN":
52
+ x = self.norm1(x.transpose(-2, -1))
53
+ x = self.activation1(x.transpose(-2, -1))
54
+ else:
55
+ x = self.norm1(x)
56
+ x = self.activation1(x)
57
+
58
+ x = self.conv1(x)
59
+
60
+ if self.norm == "LN":
61
+ x = self.norm2(x.transpose(-2, -1))
62
+ x = self.activation2(x.transpose(-2, -1))
63
+ else:
64
+ x = self.norm2(x)
65
+ x = self.activation2(x)
66
+
67
+ x = self.conv2(x)
68
+ x = x + x_orig
69
+ return x
70
+
71
+ class Resnet1D(nn.Module):
72
+ def __init__(self, n_in, n_depth, dilation_growth_rate=1, reverse_dilation=True, activation='relu', norm=None):
73
+ super().__init__()
74
+
75
+ blocks = [ResConv1DBlock(n_in, n_in, dilation=dilation_growth_rate ** depth, activation=activation, norm=norm) for depth in range(n_depth)]
76
+ if reverse_dilation:
77
+ blocks = blocks[::-1]
78
+
79
+ self.model = nn.Sequential(*blocks)
80
+
81
+ def forward(self, x):
82
+ return self.model(x)
models/rotation2xyz.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This code is based on https://github.com/Mathux/ACTOR.git
2
+ import torch
3
+ import utils.rotation_conversions as geometry
4
+
5
+
6
+ from models.smpl import SMPL, JOINTSTYPE_ROOT
7
+ # from .get_model import JOINTSTYPES
8
+ JOINTSTYPES = ["a2m", "a2mpl", "smpl", "vibe", "vertices"]
9
+
10
+
11
+ class Rotation2xyz:
12
+ def __init__(self, device, dataset='amass'):
13
+ self.device = device
14
+ self.dataset = dataset
15
+ self.smpl_model = SMPL().eval().to(device)
16
+
17
+ def __call__(self, x, mask, pose_rep, translation, glob,
18
+ jointstype, vertstrans, betas=None, beta=0,
19
+ glob_rot=None, get_rotations_back=False, **kwargs):
20
+ if pose_rep == "xyz":
21
+ return x
22
+
23
+ if mask is None:
24
+ mask = torch.ones((x.shape[0], x.shape[-1]), dtype=bool, device=x.device)
25
+
26
+ if not glob and glob_rot is None:
27
+ raise TypeError("You must specify global rotation if glob is False")
28
+
29
+ if jointstype not in JOINTSTYPES:
30
+ raise NotImplementedError("This jointstype is not implemented.")
31
+
32
+ if translation:
33
+ x_translations = x[:, -1, :3]
34
+ x_rotations = x[:, :-1]
35
+ else:
36
+ x_rotations = x
37
+
38
+ x_rotations = x_rotations.permute(0, 3, 1, 2)
39
+ nsamples, time, njoints, feats = x_rotations.shape
40
+
41
+ # Compute rotations (convert only masked sequences output)
42
+ if pose_rep == "rotvec":
43
+ rotations = geometry.axis_angle_to_matrix(x_rotations[mask])
44
+ elif pose_rep == "rotmat":
45
+ rotations = x_rotations[mask].view(-1, njoints, 3, 3)
46
+ elif pose_rep == "rotquat":
47
+ rotations = geometry.quaternion_to_matrix(x_rotations[mask])
48
+ elif pose_rep == "rot6d":
49
+ rotations = geometry.rotation_6d_to_matrix(x_rotations[mask])
50
+ else:
51
+ raise NotImplementedError("No geometry for this one.")
52
+
53
+ if not glob:
54
+ global_orient = torch.tensor(glob_rot, device=x.device)
55
+ global_orient = geometry.axis_angle_to_matrix(global_orient).view(1, 1, 3, 3)
56
+ global_orient = global_orient.repeat(len(rotations), 1, 1, 1)
57
+ else:
58
+ global_orient = rotations[:, 0]
59
+ rotations = rotations[:, 1:]
60
+
61
+ if betas is None:
62
+ betas = torch.zeros([rotations.shape[0], self.smpl_model.num_betas],
63
+ dtype=rotations.dtype, device=rotations.device)
64
+ betas[:, 1] = beta
65
+ # import ipdb; ipdb.set_trace()
66
+ out = self.smpl_model(body_pose=rotations, global_orient=global_orient, betas=betas)
67
+
68
+ # get the desirable joints
69
+ joints = out[jointstype]
70
+
71
+ x_xyz = torch.empty(nsamples, time, joints.shape[1], 3, device=x.device, dtype=x.dtype)
72
+ x_xyz[~mask] = 0
73
+ x_xyz[mask] = joints
74
+
75
+ x_xyz = x_xyz.permute(0, 2, 3, 1).contiguous()
76
+
77
+ # the first translation root at the origin on the prediction
78
+ if jointstype != "vertices":
79
+ rootindex = JOINTSTYPE_ROOT[jointstype]
80
+ x_xyz = x_xyz - x_xyz[:, [rootindex], :, :]
81
+
82
+ if translation and vertstrans:
83
+ # the first translation root at the origin
84
+ x_translations = x_translations - x_translations[:, :, [0]]
85
+
86
+ # add the translation to all the joints
87
+ x_xyz = x_xyz + x_translations[:, None, :, :]
88
+
89
+ if get_rotations_back:
90
+ return x_xyz, rotations, global_orient
91
+ else:
92
+ return x_xyz
models/smpl.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This code is based on https://github.com/Mathux/ACTOR.git
2
+ import numpy as np
3
+ import torch
4
+
5
+ import contextlib
6
+
7
+ from smplx import SMPLLayer as _SMPLLayer
8
+ from smplx.lbs import vertices2joints
9
+
10
+
11
+ # action2motion_joints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 21, 24, 38]
12
+ # change 0 and 8
13
+ action2motion_joints = [8, 1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 21, 24, 38]
14
+
15
+ from utils.config import SMPL_MODEL_PATH, JOINT_REGRESSOR_TRAIN_EXTRA
16
+
17
+ JOINTSTYPE_ROOT = {"a2m": 0, # action2motion
18
+ "smpl": 0,
19
+ "a2mpl": 0, # set(smpl, a2m)
20
+ "vibe": 8} # 0 is the 8 position: OP MidHip below
21
+
22
+ JOINT_MAP = {
23
+ 'OP Nose': 24, 'OP Neck': 12, 'OP RShoulder': 17,
24
+ 'OP RElbow': 19, 'OP RWrist': 21, 'OP LShoulder': 16,
25
+ 'OP LElbow': 18, 'OP LWrist': 20, 'OP MidHip': 0,
26
+ 'OP RHip': 2, 'OP RKnee': 5, 'OP RAnkle': 8,
27
+ 'OP LHip': 1, 'OP LKnee': 4, 'OP LAnkle': 7,
28
+ 'OP REye': 25, 'OP LEye': 26, 'OP REar': 27,
29
+ 'OP LEar': 28, 'OP LBigToe': 29, 'OP LSmallToe': 30,
30
+ 'OP LHeel': 31, 'OP RBigToe': 32, 'OP RSmallToe': 33, 'OP RHeel': 34,
31
+ 'Right Ankle': 8, 'Right Knee': 5, 'Right Hip': 45,
32
+ 'Left Hip': 46, 'Left Knee': 4, 'Left Ankle': 7,
33
+ 'Right Wrist': 21, 'Right Elbow': 19, 'Right Shoulder': 17,
34
+ 'Left Shoulder': 16, 'Left Elbow': 18, 'Left Wrist': 20,
35
+ 'Neck (LSP)': 47, 'Top of Head (LSP)': 48,
36
+ 'Pelvis (MPII)': 49, 'Thorax (MPII)': 50,
37
+ 'Spine (H36M)': 51, 'Jaw (H36M)': 52,
38
+ 'Head (H36M)': 53, 'Nose': 24, 'Left Eye': 26,
39
+ 'Right Eye': 25, 'Left Ear': 28, 'Right Ear': 27
40
+ }
41
+
42
+ JOINT_NAMES = [
43
+ 'OP Nose', 'OP Neck', 'OP RShoulder',
44
+ 'OP RElbow', 'OP RWrist', 'OP LShoulder',
45
+ 'OP LElbow', 'OP LWrist', 'OP MidHip',
46
+ 'OP RHip', 'OP RKnee', 'OP RAnkle',
47
+ 'OP LHip', 'OP LKnee', 'OP LAnkle',
48
+ 'OP REye', 'OP LEye', 'OP REar',
49
+ 'OP LEar', 'OP LBigToe', 'OP LSmallToe',
50
+ 'OP LHeel', 'OP RBigToe', 'OP RSmallToe', 'OP RHeel',
51
+ 'Right Ankle', 'Right Knee', 'Right Hip',
52
+ 'Left Hip', 'Left Knee', 'Left Ankle',
53
+ 'Right Wrist', 'Right Elbow', 'Right Shoulder',
54
+ 'Left Shoulder', 'Left Elbow', 'Left Wrist',
55
+ 'Neck (LSP)', 'Top of Head (LSP)',
56
+ 'Pelvis (MPII)', 'Thorax (MPII)',
57
+ 'Spine (H36M)', 'Jaw (H36M)',
58
+ 'Head (H36M)', 'Nose', 'Left Eye',
59
+ 'Right Eye', 'Left Ear', 'Right Ear'
60
+ ]
61
+
62
+
63
+ # adapted from VIBE/SPIN to output smpl_joints, vibe joints and action2motion joints
64
+ class SMPL(_SMPLLayer):
65
+ """ Extension of the official SMPL implementation to support more joints """
66
+
67
+ def __init__(self, model_path=SMPL_MODEL_PATH, **kwargs):
68
+ kwargs["model_path"] = model_path
69
+
70
+ # remove the verbosity for the 10-shapes beta parameters
71
+ with contextlib.redirect_stdout(None):
72
+ super(SMPL, self).__init__(**kwargs)
73
+
74
+ J_regressor_extra = np.load(JOINT_REGRESSOR_TRAIN_EXTRA)
75
+ self.register_buffer('J_regressor_extra', torch.tensor(J_regressor_extra, dtype=torch.float32))
76
+ vibe_indexes = np.array([JOINT_MAP[i] for i in JOINT_NAMES])
77
+ a2m_indexes = vibe_indexes[action2motion_joints]
78
+ smpl_indexes = np.arange(24)
79
+ a2mpl_indexes = np.unique(np.r_[smpl_indexes, a2m_indexes])
80
+
81
+ self.maps = {"vibe": vibe_indexes,
82
+ "a2m": a2m_indexes,
83
+ "smpl": smpl_indexes,
84
+ "a2mpl": a2mpl_indexes}
85
+
86
+ def forward(self, *args, **kwargs):
87
+ smpl_output = super(SMPL, self).forward(*args, **kwargs)
88
+
89
+ extra_joints = vertices2joints(self.J_regressor_extra, smpl_output.vertices)
90
+ all_joints = torch.cat([smpl_output.joints, extra_joints], dim=1)
91
+
92
+ output = {"vertices": smpl_output.vertices}
93
+
94
+ for joinstype, indexes in self.maps.items():
95
+ output[joinstype] = all_joints[:, indexes]
96
+
97
+ return output
models/t2m_trans.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ import torch.nn as nn
4
+ from torch.nn import functional as F
5
+ from torch.distributions import Categorical
6
+ import models.pos_encoding as pos_encoding
7
+ import numpy as np
8
+
9
+
10
+
11
+ class Text2Motion_Transformer(nn.Module):
12
+
13
+ def __init__(self,
14
+ num_vq=1024,
15
+ embed_dim=512,
16
+ clip_dim=512,
17
+ block_size=16,
18
+ num_layers=2,
19
+ n_head=8,
20
+ drop_out_rate=0.1,
21
+ fc_rate=4,
22
+
23
+ ):
24
+ super().__init__()
25
+ self.trans_base = CrossCondTransBase(num_vq, embed_dim, clip_dim, block_size, num_layers, n_head, drop_out_rate, fc_rate)
26
+ self.trans_head = CrossCondTransHead(num_vq, embed_dim, block_size, num_layers, n_head, drop_out_rate, fc_rate)
27
+ self.block_size = block_size
28
+ self.num_vq = num_vq
29
+
30
+ def get_block_size(self):
31
+ return self.block_size
32
+
33
+ def forward(self, idxs, clip_feature):
34
+ feat = self.trans_base(idxs, clip_feature)
35
+ logits = self.trans_head(feat)
36
+ return logits
37
+
38
+ def sample(self, clip_feature, if_categorial=False,att=False):
39
+ for k in range(self.block_size):
40
+ if k == 0:
41
+ x = []
42
+ logits = self.forward(x, clip_feature)
43
+ if att==True:
44
+ return self.trans_base.blocks[0].get_attention_weights()
45
+
46
+ logits = logits[:, -1, :]
47
+ probs = F.softmax(logits, dim=-1)
48
+
49
+ else:
50
+ x = xs
51
+ logits = self.forward(x, clip_feature)
52
+ logits = logits[:, -1, :]
53
+ probs = F.softmax(logits, dim=-1)
54
+ if if_categorial:
55
+ dist = Categorical(probs)
56
+ idx = dist.sample()
57
+ if idx == self.num_vq:
58
+ break
59
+ idx = idx.unsqueeze(-1)
60
+ else:
61
+ _, idx = torch.topk(probs, k=1, dim=-1)
62
+ if idx[0] == self.num_vq:
63
+ break
64
+ # append to the sequence and continue
65
+ if k == 0:
66
+ xs = idx
67
+ else:
68
+ xs = torch.cat((xs, idx), dim=1)
69
+
70
+ if k == self.block_size - 1:
71
+ return xs[:, :-1]
72
+ return xs
73
+
74
+ class CausalCrossConditionalSelfAttention(nn.Module):
75
+
76
+ def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1):
77
+ super().__init__()
78
+ assert embed_dim % 8 == 0
79
+ # key, query, value projections for all heads
80
+ self.key = nn.Linear(embed_dim, embed_dim)
81
+ self.query = nn.Linear(embed_dim, embed_dim)
82
+ self.value = nn.Linear(embed_dim, embed_dim)
83
+
84
+ self.attn_drop = nn.Dropout(drop_out_rate)
85
+ self.resid_drop = nn.Dropout(drop_out_rate)
86
+
87
+ self.proj = nn.Linear(embed_dim, embed_dim)
88
+ # causal mask to ensure that attention is only applied to the left in the input sequence
89
+ self.register_buffer("mask", torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size))
90
+ self.n_head = n_head
91
+ self.att=None
92
+ def forward(self, x):
93
+ B, T, C = x.size()
94
+
95
+ # calculate query, key, values for all heads in batch and move head forward to be the batch dim
96
+ k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
97
+ q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
98
+ v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
99
+ # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
100
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
101
+ att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf'))
102
+ att = F.softmax(att, dim=-1)
103
+ att = self.attn_drop(att)
104
+ y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
105
+ y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
106
+ self.att=att
107
+ # output projection
108
+ y = self.resid_drop(self.proj(y))
109
+
110
+ return y
111
+
112
+ def get_attention_weights(self):
113
+ return self.att
114
+
115
+ class Block(nn.Module):
116
+
117
+ def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1, fc_rate=4,num_layers=-1,num=None):
118
+ super().__init__()
119
+ self.num_layers=num_layers
120
+ self.num=num
121
+ self.attn_weight=None
122
+ self.ln1 = nn.LayerNorm(embed_dim)
123
+ self.ln2 = nn.LayerNorm(embed_dim)
124
+ self.attn = CausalCrossConditionalSelfAttention(embed_dim, block_size, n_head, drop_out_rate)
125
+ self.mlp = nn.Sequential(
126
+ nn.Linear(embed_dim, fc_rate * embed_dim),
127
+ nn.GELU(),
128
+ nn.Linear(fc_rate * embed_dim, embed_dim),
129
+ nn.Dropout(drop_out_rate),
130
+ )
131
+
132
+ def forward(self, x):
133
+ x = x + self.attn(self.ln1(x))
134
+ if self.num==0:
135
+ self.attn_weight = self.attn.get_attention_weights()
136
+ x = x + self.mlp(self.ln2(x))
137
+ return x
138
+ def get_attention_weights(self):
139
+ return self.attn_weight
140
+
141
+ class CrossCondTransBase(nn.Module):
142
+
143
+ def __init__(self,
144
+ num_vq=1024,
145
+ embed_dim=512,
146
+ clip_dim=512,
147
+ block_size=16,
148
+ num_layers=2,
149
+ n_head=8,
150
+ drop_out_rate=0.1,
151
+ fc_rate=4,
152
+ ):
153
+ super().__init__()
154
+
155
+ self.tok_emb = nn.Embedding(num_vq + 2, embed_dim)
156
+ self.cond_emb = nn.Linear(clip_dim, embed_dim)
157
+ self.pos_embedding = nn.Embedding(block_size, embed_dim)
158
+ self.drop = nn.Dropout(drop_out_rate)
159
+ # transformer block
160
+ self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate,num=_) for _ in range(num_layers)])
161
+ self.pos_embed = pos_encoding.PositionEmbedding(block_size, embed_dim, 0.0, False)
162
+
163
+ self.block_size = block_size
164
+ self.first_att_weights = None
165
+ self.apply(self._init_weights)
166
+
167
+ def get_block_size(self):
168
+ return self.block_size
169
+
170
+ def _init_weights(self, module):
171
+ if isinstance(module, (nn.Linear, nn.Embedding)):
172
+ module.weight.data.normal_(mean=0.0, std=0.02)
173
+ if isinstance(module, nn.Linear) and module.bias is not None:
174
+ module.bias.data.zero_()
175
+ elif isinstance(module, nn.LayerNorm):
176
+ module.bias.data.zero_()
177
+ module.weight.data.fill_(1.0)
178
+
179
+ def forward(self, idx, clip_feature):
180
+ if len(idx) == 0:
181
+ token_embeddings = self.cond_emb(clip_feature).unsqueeze(1)
182
+ else:
183
+ b, t = idx.size()
184
+ assert t <= self.block_size, "Cannot forward, model block size is exhausted."
185
+ # forward the Trans model
186
+ token_embeddings = self.tok_emb(idx)
187
+ # clip_feature.dtype = token_embeddings.dtype
188
+ token_embeddings = torch.cat([self.cond_emb(clip_feature.to(torch.float32)).unsqueeze(1), token_embeddings], dim=1)
189
+
190
+ x = self.pos_embed(token_embeddings)
191
+ x = self.blocks(x)
192
+
193
+ return x
194
+
195
+
196
+
197
+
198
+ class CrossCondTransHead(nn.Module):
199
+
200
+ def __init__(self,
201
+ num_vq=1024,
202
+ embed_dim=512,
203
+ block_size=16,
204
+ num_layers=2,
205
+ n_head=8,
206
+ drop_out_rate=0.1,
207
+ fc_rate=4):
208
+ super().__init__()
209
+
210
+ self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate,num=_) for _ in range(num_layers)])
211
+ self.ln_f = nn.LayerNorm(embed_dim)
212
+ self.head = nn.Linear(embed_dim, num_vq + 1, bias=False)
213
+ self.block_size = block_size
214
+
215
+ self.apply(self._init_weights)
216
+
217
+ def get_block_size(self):
218
+ return self.block_size
219
+
220
+ def _init_weights(self, module):
221
+ if isinstance(module, (nn.Linear, nn.Embedding)):
222
+ module.weight.data.normal_(mean=0.0, std=0.02)
223
+ if isinstance(module, nn.Linear) and module.bias is not None:
224
+ module.bias.data.zero_()
225
+ elif isinstance(module, nn.LayerNorm):
226
+ module.bias.data.zero_()
227
+ module.weight.data.fill_(1.0)
228
+
229
+ def forward(self, x):
230
+ x = self.blocks(x)
231
+ x = self.ln_f(x)
232
+ logits = self.head(x)
233
+ return logits
234
+
235
+
236
+
237
+
238
+
239
+
models/vqvae.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from models.encdec import Encoder, Decoder
3
+ from models.quantize_cnn import QuantizeEMAReset, Quantizer, QuantizeEMA, QuantizeReset
4
+
5
+
6
+ class VQVAE_251(nn.Module):
7
+ def __init__(self,
8
+ args,
9
+ nb_code=1024,
10
+ code_dim=512,
11
+ output_emb_width=512,
12
+ down_t=3,
13
+ stride_t=2,
14
+ width=512,
15
+ depth=3,
16
+ dilation_growth_rate=3,
17
+ activation='relu',
18
+ norm=None):
19
+
20
+ super().__init__()
21
+ self.code_dim = code_dim
22
+ self.num_code = nb_code
23
+ self.quant = args.quantizer
24
+ self.encoder = Encoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
25
+ self.decoder = Decoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
26
+ if args.quantizer == "ema_reset":
27
+ self.quantizer = QuantizeEMAReset(nb_code, code_dim, args)
28
+ elif args.quantizer == "orig":
29
+ self.quantizer = Quantizer(nb_code, code_dim, 1.0)
30
+ elif args.quantizer == "ema":
31
+ self.quantizer = QuantizeEMA(nb_code, code_dim, args)
32
+ elif args.quantizer == "reset":
33
+ self.quantizer = QuantizeReset(nb_code, code_dim, args)
34
+
35
+
36
+ def preprocess(self, x):
37
+ # (bs, T, Jx3) -> (bs, Jx3, T)
38
+ x = x.permute(0,2,1).float()
39
+ return x
40
+
41
+
42
+ def postprocess(self, x):
43
+ # (bs, Jx3, T) -> (bs, T, Jx3)
44
+ x = x.permute(0,2,1)
45
+ return x
46
+
47
+
48
+ def encode(self, x):
49
+ N, T, _ = x.shape
50
+ x_in = self.preprocess(x)
51
+ x_encoder = self.encoder(x_in)
52
+ x_encoder = self.postprocess(x_encoder)
53
+ x_encoder = x_encoder.contiguous().view(-1, x_encoder.shape[-1]) # (NT, C)
54
+ code_idx = self.quantizer.quantize(x_encoder)
55
+ code_idx = code_idx.view(N, -1)
56
+ return code_idx
57
+
58
+
59
+ def forward(self, x):
60
+
61
+ x_in = self.preprocess(x)
62
+ # Encode
63
+ x_encoder = self.encoder(x_in)
64
+
65
+ ## quantization
66
+ x_quantized, loss, perplexity = self.quantizer(x_encoder)
67
+
68
+ ## decoder
69
+ x_decoder = self.decoder(x_quantized)
70
+ x_out = self.postprocess(x_decoder)
71
+ return x_out, loss, perplexity
72
+
73
+
74
+ def forward_decoder(self, x):
75
+ x_d = self.quantizer.dequantize(x)
76
+ x_d = x_d.view(1, -1, self.code_dim).permute(0, 2, 1).contiguous()
77
+
78
+ # decoder
79
+ x_decoder = self.decoder(x_d)
80
+ x_out = self.postprocess(x_decoder)
81
+ return x_out
82
+
83
+
84
+
85
+ class HumanVQVAE(nn.Module):
86
+ def __init__(self,
87
+ args,
88
+ nb_code=512,
89
+ code_dim=512,
90
+ output_emb_width=512,
91
+ down_t=3,
92
+ stride_t=2,
93
+ width=512,
94
+ depth=3,
95
+ dilation_growth_rate=3,
96
+ activation='relu',
97
+ norm=None):
98
+
99
+ super().__init__()
100
+
101
+ self.nb_joints = 21 if args.dataname == 'kit' else 22
102
+ self.vqvae = VQVAE_251(args, nb_code, code_dim, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
103
+
104
+ def encode(self, x):
105
+ b, t, c = x.size()
106
+ quants = self.vqvae.encode(x) # (N, T)
107
+ return quants
108
+
109
+ def forward(self, x):
110
+
111
+ x_out, loss, perplexity = self.vqvae(x)
112
+
113
+ return x_out, loss, perplexity
114
+
115
+ def forward_decoder(self, x):
116
+ x_out = self.vqvae.forward_decoder(x)
117
+ return x_out
118
+