Spaces:
Running
Running
Colin Leong
commited on
Commit
·
9f4c52d
1
Parent(s):
5190fcf
CDL: copying files over
Browse files- README.md +1 -1
- app.py +213 -0
- requirements.txt +7 -0
- visualize_selected_points.png +0 -0
README.md
CHANGED
|
@@ -10,4 +10,4 @@ pinned: false
|
|
| 10 |
short_description: Visualize pose-format components and points.
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
| 10 |
short_description: Visualize pose-format components and points.
|
| 11 |
---
|
| 12 |
|
| 13 |
+
Copied from https://github.com/cleong110/explore-pose-components
|
app.py
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from streamlit.runtime.uploaded_file_manager import UploadedFile
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
from pose_format import Pose
|
| 6 |
+
from pose_format.pose_visualizer import PoseVisualizer
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from pyzstd import decompress
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import cv2
|
| 11 |
+
import mediapipe as mp
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
mp_holistic = mp.solutions.holistic
|
| 15 |
+
FACEMESH_CONTOURS_POINTS = [str(p) for p in sorted(set([p for p_tup in list(mp_holistic.FACEMESH_CONTOURS) for p in p_tup]))]
|
| 16 |
+
|
| 17 |
+
def pose_normalization_info(pose_header):
|
| 18 |
+
if pose_header.components[0].name == "POSE_LANDMARKS":
|
| 19 |
+
return pose_header.normalization_info(p1=("POSE_LANDMARKS", "RIGHT_SHOULDER"),
|
| 20 |
+
p2=("POSE_LANDMARKS", "LEFT_SHOULDER"))
|
| 21 |
+
|
| 22 |
+
if pose_header.components[0].name == "BODY_135":
|
| 23 |
+
return pose_header.normalization_info(p1=("BODY_135", "RShoulder"), p2=("BODY_135", "LShoulder"))
|
| 24 |
+
|
| 25 |
+
if pose_header.components[0].name == "pose_keypoints_2d":
|
| 26 |
+
return pose_header.normalization_info(p1=("pose_keypoints_2d", "RShoulder"),
|
| 27 |
+
p2=("pose_keypoints_2d", "LShoulder"))
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def pose_hide_legs(pose):
|
| 31 |
+
if pose.header.components[0].name == "POSE_LANDMARKS":
|
| 32 |
+
point_names = ["KNEE", "ANKLE", "HEEL", "FOOT_INDEX"]
|
| 33 |
+
# pylint: disable=protected-access
|
| 34 |
+
points = [
|
| 35 |
+
pose.header._get_point_index("POSE_LANDMARKS", side + "_" + n)
|
| 36 |
+
for n in point_names
|
| 37 |
+
for side in ["LEFT", "RIGHT"]
|
| 38 |
+
]
|
| 39 |
+
pose.body.confidence[:, :, points] = 0
|
| 40 |
+
pose.body.data[:, :, points, :] = 0
|
| 41 |
+
return pose
|
| 42 |
+
else:
|
| 43 |
+
raise ValueError("Unknown pose header schema for hiding legs")
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def preprocess_pose(pose):
|
| 47 |
+
pose = pose.get_components(["POSE_LANDMARKS", "FACE_LANDMARKS", "LEFT_HAND_LANDMARKS", "RIGHT_HAND_LANDMARKS"],
|
| 48 |
+
{"FACE_LANDMARKS": FACEMESH_CONTOURS_POINTS})
|
| 49 |
+
|
| 50 |
+
pose = pose.normalize(pose_normalization_info(pose.header))
|
| 51 |
+
pose = pose_hide_legs(pose)
|
| 52 |
+
|
| 53 |
+
# from sign_vq.data.normalize import pre_process_mediapipe, normalize_mean_std
|
| 54 |
+
# from pose_anonymization.appearance import remove_appearance
|
| 55 |
+
|
| 56 |
+
# pose = remove_appearance(pose)
|
| 57 |
+
# pose = pre_process_mediapipe(pose)
|
| 58 |
+
# pose = normalize_mean_std(pose)
|
| 59 |
+
|
| 60 |
+
feat = np.nan_to_num(pose.body.data)
|
| 61 |
+
feat = feat.reshape(feat.shape[0], -1)
|
| 62 |
+
|
| 63 |
+
pose_frames = torch.from_numpy(np.expand_dims(feat, axis=0)).float()
|
| 64 |
+
|
| 65 |
+
return pose_frames
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
# @st.cache_data(hash_funcs={UploadedFile: lambda p: str(p.name)})
|
| 69 |
+
def load_pose(uploaded_file:UploadedFile)->Pose:
|
| 70 |
+
|
| 71 |
+
# with input_path.open("rb") as f_in:
|
| 72 |
+
if uploaded_file.name.endswith(".zst"):
|
| 73 |
+
return Pose.read(decompress(uploaded_file.read()))
|
| 74 |
+
else:
|
| 75 |
+
return Pose.read(uploaded_file.read())
|
| 76 |
+
|
| 77 |
+
@st.cache_data(hash_funcs={Pose: lambda p: np.array(p.body.data)})
|
| 78 |
+
def get_pose_frames(pose:Pose, transparency: bool = False):
|
| 79 |
+
v = PoseVisualizer(pose)
|
| 80 |
+
frames = [frame_data for frame_data in v.draw()]
|
| 81 |
+
|
| 82 |
+
if transparency:
|
| 83 |
+
cv_code = v.cv2.COLOR_BGR2RGBA
|
| 84 |
+
else:
|
| 85 |
+
cv_code = v.cv2.COLOR_BGR2RGB
|
| 86 |
+
images = [Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames]
|
| 87 |
+
return frames, images
|
| 88 |
+
|
| 89 |
+
def get_pose_gif(pose:Pose, step:int=1, fps:int=None):
|
| 90 |
+
if fps is not None:
|
| 91 |
+
pose.body.fps = fps
|
| 92 |
+
v = PoseVisualizer(pose)
|
| 93 |
+
frames = [frame_data for frame_data in v.draw()]
|
| 94 |
+
frames = frames[::step]
|
| 95 |
+
return v.save_gif(None,frames=frames)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
uploaded_file = st.file_uploader("gimme a .pose file", type=[".pose", ".pose.zst"])
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
if uploaded_file is not None:
|
| 103 |
+
with st.spinner(f"Loading {uploaded_file.name}"):
|
| 104 |
+
pose = load_pose(uploaded_file)
|
| 105 |
+
frames, images = get_pose_frames(pose=pose)
|
| 106 |
+
st.success("done loading!")
|
| 107 |
+
# st.write(f"pose shape: {pose.body.data.shape}")
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
header = pose.header
|
| 111 |
+
st.write("### File Info")
|
| 112 |
+
with st.expander(f"Show full Pose-format header from {uploaded_file.name}"):
|
| 113 |
+
|
| 114 |
+
st.write(header)
|
| 115 |
+
# st.write(pose.body.data.shape)
|
| 116 |
+
# st.write(pose.body.fps)
|
| 117 |
+
|
| 118 |
+
st.write(f"### Selection")
|
| 119 |
+
|
| 120 |
+
components = pose.header.components
|
| 121 |
+
|
| 122 |
+
component_names = [component.name for component in components]
|
| 123 |
+
chosen_component_names = component_names
|
| 124 |
+
|
| 125 |
+
component_selection = st.radio("How to select components?", options=["manual", "signclip"])
|
| 126 |
+
if component_selection == "manual":
|
| 127 |
+
st.write(f"### Component selection: ")
|
| 128 |
+
chosen_component_names = st.pills("Components to visualize", options=component_names, selection_mode="multi", default=component_names)
|
| 129 |
+
|
| 130 |
+
# st.write(chosen_component_names)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
st.write("### Point selection:")
|
| 135 |
+
point_names = []
|
| 136 |
+
new_chosen_components =[]
|
| 137 |
+
points_dict = {}
|
| 138 |
+
for component in pose.header.components:
|
| 139 |
+
with st.expander(f"points for {component.name}"):
|
| 140 |
+
|
| 141 |
+
if component.name in chosen_component_names:
|
| 142 |
+
|
| 143 |
+
st.write(f"#### {component.name}")
|
| 144 |
+
selected_points = st.multiselect(f"points for component {component.name}:",options=component.points, default=component.points)
|
| 145 |
+
if selected_points == component.points:
|
| 146 |
+
st.write(f"All selected, no need to add a points dict entry for {component.name}")
|
| 147 |
+
else:
|
| 148 |
+
st.write(f"Adding dictionary for {component.name}")
|
| 149 |
+
points_dict[component.name] = selected_points
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
# selected_points = st.multiselect("points to visualize", options=point_names, default=point_names)
|
| 153 |
+
if chosen_component_names:
|
| 154 |
+
|
| 155 |
+
if not points_dict:
|
| 156 |
+
points_dict=None
|
| 157 |
+
# else:
|
| 158 |
+
# st.write(points_dict)
|
| 159 |
+
# st.write(chosen_component_names)
|
| 160 |
+
|
| 161 |
+
pose = pose.get_components(chosen_component_names,points=points_dict)
|
| 162 |
+
# st.write(pose.header)
|
| 163 |
+
|
| 164 |
+
elif component_selection == "signclip":
|
| 165 |
+
st.write("Selected landmarks used for SignCLIP. (Face countours only)")
|
| 166 |
+
pose = pose.get_components(["POSE_LANDMARKS", "FACE_LANDMARKS", "LEFT_HAND_LANDMARKS", "RIGHT_HAND_LANDMARKS"],
|
| 167 |
+
{"FACE_LANDMARKS": FACEMESH_CONTOURS_POINTS})
|
| 168 |
+
|
| 169 |
+
# pose = pose.normalize(pose_normalization_info(pose.header)) Visualization goes blank
|
| 170 |
+
pose = pose_hide_legs(pose)
|
| 171 |
+
with st.expander("Show facemesh contour points:"):
|
| 172 |
+
st.write(f"{FACEMESH_CONTOURS_POINTS}")
|
| 173 |
+
with st.expander(f"Show header:"):
|
| 174 |
+
st.write(pose.header)
|
| 175 |
+
# st.write(f"signclip selected, new header:")
|
| 176 |
+
# st.write(pose.body.data.shape)
|
| 177 |
+
# st.write(pose.header)
|
| 178 |
+
else:
|
| 179 |
+
pass
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
st.write(f"### Visualization")
|
| 184 |
+
width=st.select_slider("select width of images",list(range(1,pose.header.dimensions.width +1)),value=pose.header.dimensions.width/2)
|
| 185 |
+
step=st.select_slider("Step value to select every nth image",list(range(1,len(frames))),value=1)
|
| 186 |
+
fps=st.slider("fps for visualization: ", min_value=1.0, max_value=pose.body.fps,value=pose.body.fps)
|
| 187 |
+
visualize_clicked = st.button(f"Visualize!")
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
if visualize_clicked:
|
| 192 |
+
|
| 193 |
+
st.write(f"Generating gif...")
|
| 194 |
+
|
| 195 |
+
# st.write(pose.body.data.shape)
|
| 196 |
+
|
| 197 |
+
st.image(get_pose_gif(pose=pose, step=step, fps=fps))
|
| 198 |
+
|
| 199 |
+
with st.expander("See header"):
|
| 200 |
+
st.write(f"### header after filtering:")
|
| 201 |
+
st.write(pose.header)
|
| 202 |
+
|
| 203 |
+
# st.write(pose.body.data.shape)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
# st.write(visualize_pose(pose=pose)) # bunch of ndarrays
|
| 208 |
+
# st.write([Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames])
|
| 209 |
+
|
| 210 |
+
# for i, image in enumerate(images[::n]):
|
| 211 |
+
# print(f"i={i}")
|
| 212 |
+
# st.image(image=image, width=width)
|
| 213 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
pose-format
|
| 3 |
+
vidgear
|
| 4 |
+
pyzstd
|
| 5 |
+
opencv-python
|
| 6 |
+
mediapipe
|
| 7 |
+
torch
|
visualize_selected_points.png
ADDED
|