Spaces:
Runtime error
Runtime error
File size: 3,223 Bytes
e0a13cb 0f5da8c e0a13cb 0f5da8c e0a13cb 0f5da8c e0a13cb 0f5da8c e0a13cb 0f5da8c e0a13cb 0f5da8c e0a13cb 0f5da8c e0a13cb 0f5da8c e0a13cb 0f5da8c e0a13cb 0f5da8c e0a13cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
import streamlit as st
from langchain.document_loaders import DirectoryLoader, TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI as LangchainOpenAI
from dotenv import load_dotenv
import os
# Load environment variables
load_dotenv()
# Initialize Streamlit
st.set_page_config(page_title="Ask the Docs")
st.header("Ask the Docs π")
st.write('Unleash your credit card superpowers')
st.write('Revolutionize the way you track and manage your credit cards.')
st.write('Experience hassle-free financial control with Anek.')
# Initialize chat session state with a welcome message
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "Welcome to CreditCardChat! Your personal credit card advisor π. Drop in your queries."}]
# Display previous chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# Load Documents from Directory
text_loader_kwargs = {'encoding': 'utf-8'}
loader = DirectoryLoader(r'C:\Users\iamma\Documents\JupyterHub\MODELS\V1\credit_card_texts17AUG', glob="**/*.txt", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)
docs = loader.load()
# Embedding Configuration
openai_api_key = os.getenv('OPENAI_API_KEY')
embedding = OpenAIEmbeddings(openai_api_key=openai_api_key)
try:
embeddings = embedding.embed_documents([doc.page_content for doc in docs])
except Exception as e:
st.write(f"An error occurred: {e}")
st.stop()
# FAISS Database Configuration
try:
db = FAISS.from_documents(docs, embedding)
except Exception as e:
st.write(f"An error occurred while creating FAISS database: {e}")
st.stop()
# Initialize Langchain components
llm = LangchainOpenAI(openai_api_key=openai_api_key)
qa_chain = RetrievalQA.from_chain_type(llm, retriever=db.as_retriever())
# User-provided question
# ... (previous imports and initialization)
# User-provided question
if user_question := st.chat_input("Ask a question about the documents: "):
# Manually append user's question to session state and display immediately
st.session_state.messages.append({"role": "user", "content": user_question})
# Display chat messages including the new question
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# Placeholder for assistant's response
with st.chat_message("assistant"):
assistant_placeholder = st.empty()
try:
# Get the model's response
result_dict = qa_chain({"query": user_question})
result = result_dict.get("result", "I don't know.")
# Update assistant's message
assistant_placeholder.write(result)
st.session_state.messages.append({"role": "assistant", "content": result})
except Exception as e:
assistant_placeholder.write(f"An error occurred: {e}")
st.session_state.messages.append({"role": "assistant", "content": f"An error occurred: {e}"})
|