Spaces:
Running
Running
Update run.py
Browse files
run.py
CHANGED
|
@@ -3,86 +3,101 @@ import cv2
|
|
| 3 |
import numpy as np
|
| 4 |
from insightface.app import FaceAnalysis
|
| 5 |
import tempfile
|
| 6 |
-
|
| 7 |
|
| 8 |
# Initialisation du modèle
|
| 9 |
face_swapper = FaceAnalysis(name="buffalo_l")
|
| 10 |
face_swapper.prepare(ctx_id=0, det_size=(640, 640))
|
| 11 |
|
| 12 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
try:
|
| 14 |
-
# Fichiers temporaires
|
| 15 |
temp_output = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
cap = cv2.VideoCapture(target_video)
|
| 21 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 22 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 23 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
(frame_width, frame_height))
|
| 29 |
-
|
| 30 |
while cap.isOpened():
|
| 31 |
ret, frame = cap.read()
|
| 32 |
if not ret:
|
| 33 |
break
|
| 34 |
-
|
| 35 |
target_faces = face_swapper.get(frame)
|
| 36 |
-
if target_faces:
|
| 37 |
-
frame = swap_face(source_face, target_faces[
|
| 38 |
-
|
| 39 |
out.write(frame)
|
| 40 |
-
|
| 41 |
cap.release()
|
| 42 |
out.release()
|
| 43 |
-
|
| 44 |
return temp_output.name
|
| 45 |
-
|
| 46 |
except Exception as e:
|
| 47 |
print(f"ERREUR: {str(e)}")
|
| 48 |
return None
|
| 49 |
|
| 50 |
-
def swap_face(source_face, target_face, frame):
|
| 51 |
-
# Algorithme professionnel d'échange
|
| 52 |
-
src_bbox = source_face.bbox.astype(int)
|
| 53 |
-
tgt_bbox = target_face.bbox.astype(int)
|
| 54 |
-
|
| 55 |
-
# Extraction et ajustement du visage source
|
| 56 |
-
src_face = cv2.resize(source_face.img[tgt_bbox[1]:tgt_bbox[3], tgt_bbox[0]:tgt_bbox[2]],
|
| 57 |
-
(tgt_bbox[2]-tgt_bbox[0], tgt_bbox[3]-tgt_bbox[1]))
|
| 58 |
-
|
| 59 |
-
# Fusion réaliste
|
| 60 |
-
mask = np.zeros_like(src_face)
|
| 61 |
-
cv2.circle(mask,
|
| 62 |
-
(mask.shape[1]//2, mask.shape[0]//2),
|
| 63 |
-
min(mask.shape)//2,
|
| 64 |
-
(255,255,255), -1)
|
| 65 |
-
|
| 66 |
-
center = ((tgt_bbox[0]+tgt_bbox[2])//2, (tgt_bbox[1]+tgt_bbox[3])//2)
|
| 67 |
-
output = cv2.seamlessClone(
|
| 68 |
-
src_face, frame, mask, center, cv2.NORMAL_CLONE)
|
| 69 |
-
|
| 70 |
-
return output
|
| 71 |
|
| 72 |
-
# Interface
|
| 73 |
with gr.Blocks() as app:
|
| 74 |
-
gr.Markdown("## 🎬 VideoFaceSwap Pro")
|
| 75 |
-
|
| 76 |
with gr.Row():
|
| 77 |
-
src_img = gr.Image(label="Visage
|
| 78 |
-
tgt_video = gr.Video(label="Vidéo
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
btn.click(
|
| 84 |
fn=process_video,
|
| 85 |
-
inputs=[src_img, tgt_video],
|
| 86 |
outputs=output_video
|
| 87 |
)
|
| 88 |
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
from insightface.app import FaceAnalysis
|
| 5 |
import tempfile
|
| 6 |
+
import os
|
| 7 |
|
| 8 |
# Initialisation du modèle
|
| 9 |
face_swapper = FaceAnalysis(name="buffalo_l")
|
| 10 |
face_swapper.prepare(ctx_id=0, det_size=(640, 640))
|
| 11 |
|
| 12 |
+
def swap_face(source_face, target_face, frame, blend_factor=0.7):
|
| 13 |
+
"""Échange le visage avec possibilité de régler l'intensité du mélange"""
|
| 14 |
+
src_emb = source_face.normed_embedding
|
| 15 |
+
tgt_bbox = target_face.bbox.astype(int)
|
| 16 |
+
|
| 17 |
+
# Obtenir le visage source (de la cible pour garder la taille)
|
| 18 |
+
h, w = frame.shape[:2]
|
| 19 |
+
src_face_img = source_face.img
|
| 20 |
+
resized_face = cv2.resize(src_face_img, (tgt_bbox[2]-tgt_bbox[0], tgt_bbox[3]-tgt_bbox[1]))
|
| 21 |
+
|
| 22 |
+
# Créer un masque doux
|
| 23 |
+
mask = np.zeros_like(resized_face)
|
| 24 |
+
center = (mask.shape[1]//2, mask.shape[0]//2)
|
| 25 |
+
radius = int(min(mask.shape) * 0.45)
|
| 26 |
+
cv2.circle(mask, center, radius, (255,255,255), -1)
|
| 27 |
+
mask = cv2.GaussianBlur(mask, (15,15), 5)
|
| 28 |
+
|
| 29 |
+
# Positionner le visage
|
| 30 |
+
center = ((tgt_bbox[0]+tgt_bbox[2])//2, (tgt_bbox[1]+tgt_bbox[3])//2)
|
| 31 |
+
|
| 32 |
+
# Appliquer seamlessClone
|
| 33 |
+
result = cv2.seamlessClone(
|
| 34 |
+
resized_face, frame, mask, center, cv2.NORMAL_CLONE
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Mélanger avec l'original selon blend_factor
|
| 38 |
+
blended = cv2.addWeighted(frame, 1-blend_factor, result, blend_factor, 0)
|
| 39 |
+
|
| 40 |
+
return blended
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def process_video(source_img, target_video, face_index_source=0, face_index_target=0, blend_factor=0.8):
|
| 44 |
try:
|
|
|
|
| 45 |
temp_output = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
| 46 |
|
| 47 |
+
# Charger le visage source
|
| 48 |
+
source_faces = face_swapper.get(np.array(source_img))
|
| 49 |
+
if not source_faces:
|
| 50 |
+
raise ValueError("Aucun visage trouvé sur l'image source.")
|
| 51 |
+
source_face = source_faces[face_index_source]
|
| 52 |
+
|
| 53 |
cap = cv2.VideoCapture(target_video)
|
| 54 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 55 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 56 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 57 |
+
|
| 58 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 59 |
+
out = cv2.VideoWriter(temp_output.name, fourcc, fps, (frame_width, frame_height))
|
| 60 |
+
|
|
|
|
|
|
|
| 61 |
while cap.isOpened():
|
| 62 |
ret, frame = cap.read()
|
| 63 |
if not ret:
|
| 64 |
break
|
| 65 |
+
|
| 66 |
target_faces = face_swapper.get(frame)
|
| 67 |
+
if target_faces and len(target_faces) > face_index_target:
|
| 68 |
+
frame = swap_face(source_face, target_faces[face_index_target], frame, blend_factor)
|
| 69 |
+
|
| 70 |
out.write(frame)
|
| 71 |
+
|
| 72 |
cap.release()
|
| 73 |
out.release()
|
| 74 |
+
|
| 75 |
return temp_output.name
|
| 76 |
+
|
| 77 |
except Exception as e:
|
| 78 |
print(f"ERREUR: {str(e)}")
|
| 79 |
return None
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
# Interface Gradio
|
| 83 |
with gr.Blocks() as app:
|
| 84 |
+
gr.Markdown("## 🎬 VideoFaceSwap Pro - Échangez des visages en vidéo avec précision")
|
| 85 |
+
|
| 86 |
with gr.Row():
|
| 87 |
+
src_img = gr.Image(label="Visage Source", type="numpy")
|
| 88 |
+
tgt_video = gr.Video(label="Vidéo Cible")
|
| 89 |
+
|
| 90 |
+
with gr.Row():
|
| 91 |
+
face_index_source = gr.Slider(0, 5, value=0, step=1, label="Index Visage Source")
|
| 92 |
+
face_index_target = gr.Slider(0, 5, value=0, step=1, label="Index Visage à Remplacer")
|
| 93 |
+
blend_factor = gr.Slider(0.0, 1.0, value=0.8, label="Intensité du mélange")
|
| 94 |
+
|
| 95 |
+
btn = gr.Button("🔁 Traiter la Vidéo", variant="primary")
|
| 96 |
+
output_video = gr.Video(label="Vidéo Résultat")
|
| 97 |
+
|
| 98 |
btn.click(
|
| 99 |
fn=process_video,
|
| 100 |
+
inputs=[src_img, tgt_video, face_index_source, face_index_target, blend_factor],
|
| 101 |
outputs=output_video
|
| 102 |
)
|
| 103 |
|