Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,81 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
demo = gr.ChatInterface(
|
| 46 |
-
|
|
|
|
|
|
|
| 47 |
additional_inputs=[
|
| 48 |
-
gr.
|
| 49 |
-
gr.Slider(
|
| 50 |
-
gr.
|
| 51 |
-
|
| 52 |
-
minimum=0.1,
|
| 53 |
-
maximum=1.0,
|
| 54 |
-
value=0.95,
|
| 55 |
-
step=0.05,
|
| 56 |
-
label="Top-p (nucleus sampling)",
|
| 57 |
-
),
|
| 58 |
-
],
|
| 59 |
)
|
| 60 |
|
| 61 |
-
|
| 62 |
-
if __name__ == "__main__":
|
| 63 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
| 4 |
+
from threading import Thread
|
| 5 |
+
import spaces
|
| 6 |
+
|
| 7 |
+
# 言語リスト
|
| 8 |
+
languages = [
|
| 9 |
+
"English", "Chinese (Simplified)", "Chinese (Traditional)", "Spanish", "Arabic", "Hindi",
|
| 10 |
+
"Bengali", "Portuguese", "Russian", "Japanese", "German", "French", "Urdu", "Indonesian",
|
| 11 |
+
"Italian", "Turkish", "Korean", "Vietnamese", "Tamil", "Marathi", "Telugu", "Persian",
|
| 12 |
+
"Polish", "Dutch", "Thai", "Gujarati", "Romanian", "Ukrainian", "Malay", "Kannada", "Oriya (Odia)",
|
| 13 |
+
"Burmese (Myanmar)", "Azerbaijani", "Uzbek", "Kurdish (Kurmanji)", "Swedish", "Filipino (Tagalog)",
|
| 14 |
+
"Serbian", "Czech", "Hungarian", "Greek", "Belarusian", "Bulgarian", "Hebrew", "Finnish",
|
| 15 |
+
"Slovak", "Norwegian", "Danish", "Sinhala", "Croatian", "Lithuanian", "Slovenian", "Latvian",
|
| 16 |
+
"Estonian", "Armenian", "Malayalam", "Georgian", "Mongolian", "Afrikaans", "Nepali", "Pashto",
|
| 17 |
+
"Punjabi", "Kurdish", "Kyrgyz", "Somali", "Albanian", "Icelandic", "Basque", "Luxembourgish",
|
| 18 |
+
"Macedonian", "Maltese", "Hawaiian", "Yoruba", "Maori", "Zulu", "Welsh", "Swahili", "Haitian Creole",
|
| 19 |
+
"Lao", "Amharic", "Khmer", "Javanese", "Kazakh", "Malagasy", "Sindhi", "Sundanese", "Tajik", "Xhosa",
|
| 20 |
+
"Yiddish", "Bosnian", "Cebuano", "Chichewa", "Corsican", "Esperanto", "Frisian", "Galician", "Hausa",
|
| 21 |
+
"Hmong", "Igbo", "Irish", "Kinyarwanda", "Latin", "Samoan", "Scots Gaelic", "Sesotho", "Shona",
|
| 22 |
+
"Sotho", "Swedish", "Uyghur"
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained("aixsatoshi/Honyaku-7b-v2")
|
| 26 |
+
model = AutoModelForCausalLM.from_pretrained("aixsatoshi/Honyaku-7b-v2", torch_dtype=torch.float16)
|
| 27 |
+
model = model.to('cuda:0')
|
| 28 |
+
|
| 29 |
+
class StopOnTokens(StoppingCriteria):
|
| 30 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 31 |
+
stop_ids = [2]
|
| 32 |
+
for stop_id in stop_ids:
|
| 33 |
+
if input_ids[0][-1] == stop_id:
|
| 34 |
+
return True
|
| 35 |
+
return False
|
| 36 |
+
|
| 37 |
+
@spaces.GPU
|
| 38 |
+
def predict(message, history, tokens, temperature, language):
|
| 39 |
+
tag = "<" + language.lower() + ">"
|
| 40 |
+
history_transformer_format = history + [[message, ""]]
|
| 41 |
+
stop = StopOnTokens()
|
| 42 |
+
|
| 43 |
+
messages = "".join(["".join(["\n<english>:"+item[0]+"</english>\n", tag+item[1]])
|
| 44 |
+
for item in history_transformer_format])
|
| 45 |
+
|
| 46 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
|
| 47 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
| 48 |
+
generate_kwargs = dict(
|
| 49 |
+
model_inputs,
|
| 50 |
+
streamer=streamer,
|
| 51 |
+
max_new_tokens=int(tokens),
|
| 52 |
+
temperature=float(temperature),
|
| 53 |
+
do_sample=True,
|
| 54 |
+
top_p=0.95,
|
| 55 |
+
top_k=20,
|
| 56 |
+
repetition_penalty=1.15,
|
| 57 |
+
num_beams=1,
|
| 58 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
| 59 |
+
)
|
| 60 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 61 |
+
t.start()
|
| 62 |
+
|
| 63 |
+
partial_message = ""
|
| 64 |
+
for new_token in streamer:
|
| 65 |
+
if new_token != '<':
|
| 66 |
+
partial_message += new_token
|
| 67 |
+
yield partial_message
|
| 68 |
+
|
| 69 |
+
# Gradioインタフェースの設定
|
| 70 |
demo = gr.ChatInterface(
|
| 71 |
+
fn=predict,
|
| 72 |
+
title="Honyaku-7b webui",
|
| 73 |
+
description="Translate using Honyaku-7b model",
|
| 74 |
additional_inputs=[
|
| 75 |
+
gr.Slider(100, 4096, value=1000, label="Tokens"),
|
| 76 |
+
gr.Slider(0.0, 1.0, value=0.3, label="Temperature"),
|
| 77 |
+
gr.Dropdown(choices=languages, value="Japanese", label="Language")
|
| 78 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
)
|
| 80 |
|
| 81 |
+
demo.queue().launch()
|
|
|
|
|
|