Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import random
|
| 4 |
+
import torch
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
from e4e.models.psp import pSp
|
| 8 |
+
from util import *
|
| 9 |
+
from huggingface_hub import hf_hub_download
|
| 10 |
+
|
| 11 |
+
import tempfile
|
| 12 |
+
from argparse import Namespace
|
| 13 |
+
import shutil
|
| 14 |
+
|
| 15 |
+
import dlib
|
| 16 |
+
import numpy as np
|
| 17 |
+
import torchvision.transforms as transforms
|
| 18 |
+
from torchvision import utils
|
| 19 |
+
|
| 20 |
+
from model.sg2_model import Generator
|
| 21 |
+
from generate_videos import project_code_by_edit_name
|
| 22 |
+
|
| 23 |
+
import clip
|
| 24 |
+
import urllib.request
|
| 25 |
+
|
| 26 |
+
model_dir = "models"
|
| 27 |
+
os.makedirs(model_dir, exist_ok=True)
|
| 28 |
+
|
| 29 |
+
model_repos = {
|
| 30 |
+
"e4e": ("akhaliq/JoJoGAN_e4e_ffhq_encode", "e4e_ffhq_encode.pt"),
|
| 31 |
+
"dlib": ("akhaliq/jojogan_dlib", "shape_predictor_68_face_landmarks.dat"),
|
| 32 |
+
"base": ("akhaliq/jojogan-stylegan2-ffhq-config-f", "stylegan2-ffhq-config-f.pt"),
|
| 33 |
+
"sketch": ("rinong/stylegan-nada-models", "sketch.pt"),
|
| 34 |
+
"santa": ("mjdolan/stylegan-nada-models", "santa.pt"),
|
| 35 |
+
"jesus": ("mjdolan/stylegan-nada-models", "jesus.pt"),
|
| 36 |
+
"mariah": ("mjdolan/stylegan-nada-models", "mariah.pt"),
|
| 37 |
+
"heat_miser": ("mjdolan/stylegan-nada-models", "heat.pt"),
|
| 38 |
+
"claymation": ("mjdolan/stylegan-nada-models", "claymation.pt"),
|
| 39 |
+
"elf": ("mjdolan/stylegan-nada-models", "elf.pt"),
|
| 40 |
+
"krampus": ("mjdolan/stylegan-nada-models", "krampus.pt"),
|
| 41 |
+
"grinch": ("mjdolan/stylegan-nada-models", "grinch.pt"),
|
| 42 |
+
"jack_frost": ("mjdolan/stylegan-nada-models", "jack_frost.pt"),
|
| 43 |
+
"rudolph": ("mjdolan/stylegan-nada-models", "rudolph.pt"),
|
| 44 |
+
"home_alone": ("mjdolan/stylegan-nada-models", "home_alone.pt"),
|
| 45 |
+
"puppet":("rinong/stylegan-nada-models", "plastic_puppet.pt"),
|
| 46 |
+
"crochet": ("rinong/stylegan-nada-models", "crochet.pt"),
|
| 47 |
+
"shrek": ("rinong/stylegan-nada-models", "shrek.pt"),
|
| 48 |
+
"pixar": ("rinong/stylegan-nada-models", "pixar.pt")
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
interface_gan_map = {"None": None, "Masculine": ("gender", 1.0), "Feminine": ("gender", -1.0),
|
| 52 |
+
"Smiling": ("smile", 1.0),
|
| 53 |
+
"Frowning": ("smile", -1.0), "Young": ("age", -1.0), "Old": ("age", 1.0),
|
| 54 |
+
"Long Hair": ("hair_length", -1.0), "Short Hair": ("hair_length", 1.0)}
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def get_models():
|
| 58 |
+
os.makedirs(model_dir, exist_ok=True)
|
| 59 |
+
|
| 60 |
+
model_paths = {}
|
| 61 |
+
|
| 62 |
+
for model_name, repo_details in model_repos.items():
|
| 63 |
+
download_path = hf_hub_download(repo_id=repo_details[0], filename=repo_details[1])
|
| 64 |
+
model_paths[model_name] = download_path
|
| 65 |
+
|
| 66 |
+
return model_paths
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
model_paths = get_models()
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class ImageEditor(object):
|
| 73 |
+
def __init__(self):
|
| 74 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 75 |
+
|
| 76 |
+
latent_size = 512
|
| 77 |
+
n_mlp = 8
|
| 78 |
+
channel_mult = 2
|
| 79 |
+
model_size = 1024
|
| 80 |
+
|
| 81 |
+
self.generators = {}
|
| 82 |
+
|
| 83 |
+
self.model_list = [name for name in model_paths.keys() if name not in ["e4e", "dlib"]]
|
| 84 |
+
|
| 85 |
+
for model in self.model_list:
|
| 86 |
+
g_ema = Generator(
|
| 87 |
+
model_size, latent_size, n_mlp, channel_multiplier=channel_mult
|
| 88 |
+
).to(self.device)
|
| 89 |
+
|
| 90 |
+
checkpoint = torch.load(model_paths[model], map_location=self.device)
|
| 91 |
+
|
| 92 |
+
g_ema.load_state_dict(checkpoint['g_ema'])
|
| 93 |
+
|
| 94 |
+
self.generators[model] = g_ema
|
| 95 |
+
|
| 96 |
+
self.experiment_args = {"model_path": model_paths["e4e"]}
|
| 97 |
+
self.experiment_args["transform"] = transforms.Compose(
|
| 98 |
+
[
|
| 99 |
+
transforms.Resize((256, 256)),
|
| 100 |
+
transforms.ToTensor(),
|
| 101 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
|
| 102 |
+
]
|
| 103 |
+
)
|
| 104 |
+
self.resize_dims = (256, 256)
|
| 105 |
+
|
| 106 |
+
model_path = self.experiment_args["model_path"]
|
| 107 |
+
|
| 108 |
+
ckpt = torch.load(model_path, map_location="cuda:0" if torch.cuda.is_available() else "cpu")
|
| 109 |
+
opts = ckpt["opts"]
|
| 110 |
+
|
| 111 |
+
opts["checkpoint_path"] = model_path
|
| 112 |
+
opts = Namespace(**opts)
|
| 113 |
+
|
| 114 |
+
self.e4e_net = pSp(opts, self.device)
|
| 115 |
+
self.e4e_net.eval()
|
| 116 |
+
|
| 117 |
+
self.shape_predictor = dlib.shape_predictor(
|
| 118 |
+
model_paths["dlib"]
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
self.clip_model, _ = clip.load("ViT-B/32", device=self.device)
|
| 123 |
+
|
| 124 |
+
print("setup complete")
|
| 125 |
+
|
| 126 |
+
def get_style_list(self):
|
| 127 |
+
style_list = []
|
| 128 |
+
|
| 129 |
+
for key in self.generators:
|
| 130 |
+
style_list.append(key)
|
| 131 |
+
|
| 132 |
+
return style_list
|
| 133 |
+
|
| 134 |
+
def invert_image(self, input_image):
|
| 135 |
+
input_image = self.run_alignment(str(input_image))
|
| 136 |
+
|
| 137 |
+
input_image = input_image.resize(self.resize_dims)
|
| 138 |
+
|
| 139 |
+
img_transforms = self.experiment_args["transform"]
|
| 140 |
+
transformed_image = img_transforms(input_image)
|
| 141 |
+
|
| 142 |
+
with torch.no_grad():
|
| 143 |
+
images, latents = self.run_on_batch(transformed_image.unsqueeze(0))
|
| 144 |
+
result_image, latent = images[0], latents[0]
|
| 145 |
+
|
| 146 |
+
inverted_latent = latent.unsqueeze(0).unsqueeze(1)
|
| 147 |
+
|
| 148 |
+
return inverted_latent
|
| 149 |
+
|
| 150 |
+
def get_generators_for_styles(self, output_styles, loop_styles=False):
|
| 151 |
+
|
| 152 |
+
if "base" in output_styles: # always start with base if chosen
|
| 153 |
+
output_styles.insert(0, output_styles.pop(output_styles.index("base")))
|
| 154 |
+
if loop_styles:
|
| 155 |
+
output_styles.append(output_styles[0])
|
| 156 |
+
|
| 157 |
+
return [self.generators[style] for style in output_styles]
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def get_target_latent(self, source_latent, alter, generators):
|
| 162 |
+
np_source_latent = source_latent.squeeze(0).cpu().detach().numpy()
|
| 163 |
+
if alter == "None":
|
| 164 |
+
return random.choice([source_latent.squeeze(0),] * max((len(generators) - 1), 1))
|
| 165 |
+
edit = interface_gan_map[alter]
|
| 166 |
+
projected_code_np = project_code_by_edit_name(np_source_latent, edit[0], edit[1])
|
| 167 |
+
return torch.from_numpy(projected_code_np).float().to(self.device)
|
| 168 |
+
|
| 169 |
+
def edit_image(self, input, output_styles, edit_choices):
|
| 170 |
+
return self.predict(input, output_styles, edit_choices=edit_choices)
|
| 171 |
+
|
| 172 |
+
def predict(
|
| 173 |
+
self,
|
| 174 |
+
input, # Input image path
|
| 175 |
+
output_styles, # Style checkbox options.
|
| 176 |
+
loop_styles=False, # Loop back to the initial style
|
| 177 |
+
edit_choices=None, # Optional dictionary with edit choice arguments
|
| 178 |
+
):
|
| 179 |
+
|
| 180 |
+
if edit_choices is None:
|
| 181 |
+
edit_choices = {"edit_type": "None"}
|
| 182 |
+
|
| 183 |
+
# @title Align image
|
| 184 |
+
out_dir = tempfile.mkdtemp()
|
| 185 |
+
|
| 186 |
+
inverted_latent = self.invert_image(input)
|
| 187 |
+
generators = self.get_generators_for_styles(output_styles, loop_styles)
|
| 188 |
+
output_paths = []
|
| 189 |
+
|
| 190 |
+
with torch.no_grad():
|
| 191 |
+
for g_ema in generators:
|
| 192 |
+
latent_for_gen = self.get_target_latent(inverted_latent, edit_choices, generators)
|
| 193 |
+
|
| 194 |
+
img, _ = g_ema([latent_for_gen], input_is_latent=True, truncation=1, randomize_noise=False)
|
| 195 |
+
|
| 196 |
+
output_path = os.path.join(out_dir, f"out_{len(output_paths)}.jpg")
|
| 197 |
+
utils.save_image(img, output_path, nrow=1, normalize=True, range=(-1, 1))
|
| 198 |
+
|
| 199 |
+
output_paths.append(output_path)
|
| 200 |
+
|
| 201 |
+
return output_paths
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def run_alignment(self, image_path):
|
| 205 |
+
aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor)
|
| 206 |
+
print("Aligned image has shape: {}".format(aligned_image.size))
|
| 207 |
+
return aligned_image
|
| 208 |
+
|
| 209 |
+
def run_on_batch(self, inputs):
|
| 210 |
+
images, latents = self.e4e_net(
|
| 211 |
+
inputs.to(self.device).float(), randomize_noise=False, return_latents=True
|
| 212 |
+
)
|
| 213 |
+
return images, latents
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
editor = ImageEditor()
|
| 217 |
+
# Fetch image for analysis
|
| 218 |
+
img_url = "http://claireye.com.tw/img/230212a.jpg"
|
| 219 |
+
urllib.request.urlretrieve(img_url, "pose.jpg")
|
| 220 |
+
blocks = gr.Blocks(theme="darkdefault")
|
| 221 |
+
|
| 222 |
+
with blocks:
|
| 223 |
+
gr.Markdown("<h1><center>Holiday Filters (StyleGAN-NADA)</center></h1>")
|
| 224 |
+
gr.Markdown(
|
| 225 |
+
"<div>Upload an image of your face, pick your desired output styles, pick any modifiers, and apply StyleGAN-based editing.</div>"
|
| 226 |
+
)
|
| 227 |
+
with gr.Row():
|
| 228 |
+
with gr.Column():
|
| 229 |
+
input_img = gr.Image(type="filepath", label="Input image")
|
| 230 |
+
with gr.Column():
|
| 231 |
+
style_choice = gr.CheckboxGroup(choices=editor.get_style_list(), value=editor.get_style_list(), type="value", label="Styles")
|
| 232 |
+
alter = gr.Dropdown(
|
| 233 |
+
choices=["None", "Masculine", "Feminine", "Smiling", "Frowning", "Young", "Old", "Short Hair",
|
| 234 |
+
"Long Hair"], value="None", label="Additional Modifiers")
|
| 235 |
+
img_button = gr.Button("Edit Image")
|
| 236 |
+
|
| 237 |
+
with gr.Row():
|
| 238 |
+
img_output = gr.Gallery(label="Output Images")
|
| 239 |
+
img_output.style(grid=(3, 3, 4, 4, 6, 6))
|
| 240 |
+
|
| 241 |
+
img_button.click(fn=editor.edit_image, inputs=[input_img, style_choice, alter], outputs=img_output)
|
| 242 |
+
ex = gr.Examples(examples=[['pose.jpg', editor.get_style_list(), "Smiling"], ['pose.jpg', editor.get_style_list(), "Long Hair"]], fn=editor.edit_image, inputs=[input_img, style_choice, alter],
|
| 243 |
+
outputs=[img_output], cache_examples=True,
|
| 244 |
+
run_on_click=True)
|
| 245 |
+
ex.dataset.headers = [""]
|
| 246 |
+
article = "<p style='text-align: center'><a href='http://claireye.com.tw'>Claireye</a> | 2023</p>"
|
| 247 |
+
gr.Markdown(article)
|
| 248 |
+
|
| 249 |
+
blocks.launch(enable_queue=True)
|