Spaces:
Sleeping
Sleeping
Commit
·
46e8495
1
Parent(s):
5576428
add photopro image caching
Browse files- demo.py +13 -5
- src/envs/edit_photo_opt.py +591 -0
demo.py
CHANGED
|
@@ -3,7 +3,7 @@ import torch
|
|
| 3 |
from PIL import Image
|
| 4 |
import numpy as np
|
| 5 |
from streamlit_image_comparison import image_comparison
|
| 6 |
-
from src.envs.new_edit_photo import PhotoEditor
|
| 7 |
from src.sac.sac_inference import InferenceAgent
|
| 8 |
import yaml
|
| 9 |
import os
|
|
@@ -15,12 +15,13 @@ import pandas as pd
|
|
| 15 |
from bokeh.plotting import figure
|
| 16 |
from bokeh.models import ColumnDataSource
|
| 17 |
from bokeh.palettes import Spectral3
|
|
|
|
| 18 |
# Set page config to wide mode
|
| 19 |
st.set_page_config(layout="wide")
|
| 20 |
|
| 21 |
-
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 22 |
-
|
| 23 |
-
MODEL_PATH = "experiments/
|
| 24 |
SLIDERS = ['temp','tint','exposure', 'contrast','highlights','shadows', 'whites', 'blacks','vibrance','saturation']
|
| 25 |
SLIDERS_ORD = ['contrast','exposure','temp','tint','whites','blacks','highlights','shadows','vibrance','saturation']
|
| 26 |
|
|
@@ -73,7 +74,11 @@ def enhance_image(image:np.array, params:dict):
|
|
| 73 |
input_image = image.unsqueeze(0).to(DEVICE)
|
| 74 |
parameters = [params[param_name]/100.0 for param_name in SLIDERS_ORD]
|
| 75 |
parameters = torch.tensor(parameters).unsqueeze(0).to(DEVICE)
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
enhanced_image = enhanced_image.squeeze(0).cpu().detach().numpy()
|
| 78 |
enhanced_image = np.clip(enhanced_image, 0, 1)
|
| 79 |
enhanced_image = (enhanced_image*255).astype(np.uint8)
|
|
@@ -134,6 +139,7 @@ def reset_sliders():
|
|
| 134 |
|
| 135 |
def reset_on_upload():
|
| 136 |
st.session_state.original_image = None
|
|
|
|
| 137 |
reset_sliders()
|
| 138 |
|
| 139 |
def create_smooth_histogram(image):
|
|
@@ -202,6 +208,8 @@ if 'enhanced_image' not in st.session_state:
|
|
| 202 |
st.session_state.enhanced_image = None
|
| 203 |
if 'original_image' not in st.session_state:
|
| 204 |
st.session_state.original_image = None
|
|
|
|
|
|
|
| 205 |
if 'params' not in st.session_state:
|
| 206 |
st.session_state.params = {name: 0 for name in SLIDERS}
|
| 207 |
for name in SLIDERS:
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import numpy as np
|
| 5 |
from streamlit_image_comparison import image_comparison
|
| 6 |
+
# from src.envs.new_edit_photo import PhotoEditor
|
| 7 |
from src.sac.sac_inference import InferenceAgent
|
| 8 |
import yaml
|
| 9 |
import os
|
|
|
|
| 15 |
from bokeh.plotting import figure
|
| 16 |
from bokeh.models import ColumnDataSource
|
| 17 |
from bokeh.palettes import Spectral3
|
| 18 |
+
from src.envs.edit_photo_opt import PhotoEditor
|
| 19 |
# Set page config to wide mode
|
| 20 |
st.set_page_config(layout="wide")
|
| 21 |
|
| 22 |
+
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
+
DEVICE = torch.device("cpu")
|
| 24 |
+
MODEL_PATH = "experiments/ResNet_10_sliders__224_128_aug__2024-07-23_21-23-35"
|
| 25 |
SLIDERS = ['temp','tint','exposure', 'contrast','highlights','shadows', 'whites', 'blacks','vibrance','saturation']
|
| 26 |
SLIDERS_ORD = ['contrast','exposure','temp','tint','whites','blacks','highlights','shadows','vibrance','saturation']
|
| 27 |
|
|
|
|
| 74 |
input_image = image.unsqueeze(0).to(DEVICE)
|
| 75 |
parameters = [params[param_name]/100.0 for param_name in SLIDERS_ORD]
|
| 76 |
parameters = torch.tensor(parameters).unsqueeze(0).to(DEVICE)
|
| 77 |
+
if st.session_state.photopro_image is None:
|
| 78 |
+
enhanced_image,photopro_image = photo_editor(input_image,parameters,use_photopro_image=False)
|
| 79 |
+
st.session_state.photopro_image = photopro_image
|
| 80 |
+
else:
|
| 81 |
+
enhanced_image = photo_editor(st.session_state.photopro_image,parameters,use_photopro_image=True)
|
| 82 |
enhanced_image = enhanced_image.squeeze(0).cpu().detach().numpy()
|
| 83 |
enhanced_image = np.clip(enhanced_image, 0, 1)
|
| 84 |
enhanced_image = (enhanced_image*255).astype(np.uint8)
|
|
|
|
| 139 |
|
| 140 |
def reset_on_upload():
|
| 141 |
st.session_state.original_image = None
|
| 142 |
+
st.session_state.photopro_image = None
|
| 143 |
reset_sliders()
|
| 144 |
|
| 145 |
def create_smooth_histogram(image):
|
|
|
|
| 208 |
st.session_state.enhanced_image = None
|
| 209 |
if 'original_image' not in st.session_state:
|
| 210 |
st.session_state.original_image = None
|
| 211 |
+
if 'photopro_image' not in st.session_state:
|
| 212 |
+
st.session_state.photopro_image = None
|
| 213 |
if 'params' not in st.session_state:
|
| 214 |
st.session_state.params = {name: 0 for name in SLIDERS}
|
| 215 |
for name in SLIDERS:
|
src/envs/edit_photo_opt.py
ADDED
|
@@ -0,0 +1,591 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import cv2
|
| 5 |
+
try:
|
| 6 |
+
from .dehaze.src import dehaze
|
| 7 |
+
except:
|
| 8 |
+
from dehaze.src import dehaze
|
| 9 |
+
import streamlit as st
|
| 10 |
+
# def numpy_sigmoid(x):
|
| 11 |
+
# return 1/(1+np.exp(-x))
|
| 12 |
+
|
| 13 |
+
def sigmoid_inverse(y):
|
| 14 |
+
epsilon = 10**(-3)
|
| 15 |
+
y = F.relu(y-epsilon)+epsilon
|
| 16 |
+
y = 1-epsilon-F.relu((1-epsilon)-y)
|
| 17 |
+
y = (1/y)-1
|
| 18 |
+
output = -torch.log(y)
|
| 19 |
+
return output
|
| 20 |
+
class Sigmoid():
|
| 21 |
+
def __init__(self):
|
| 22 |
+
self.num_parameters = 0
|
| 23 |
+
def __call__(self,images):
|
| 24 |
+
return torch.sigmoid(images)
|
| 25 |
+
class SigmoidInverse():
|
| 26 |
+
|
| 27 |
+
def __init__(self):
|
| 28 |
+
self.num_parameters = 0
|
| 29 |
+
|
| 30 |
+
def __call__(self, images):
|
| 31 |
+
return sigmoid_inverse(images)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
new_sig_inv = SigmoidInverse()
|
| 35 |
+
|
| 36 |
+
class AdjustContrast():
|
| 37 |
+
def __init__(self):
|
| 38 |
+
self.num_parameters = 1
|
| 39 |
+
self.window_names = ["parameter"]
|
| 40 |
+
self.slider_names = ["contrast"]
|
| 41 |
+
|
| 42 |
+
def __call__(self, images:torch.Tensor, parameters:torch.Tensor):
|
| 43 |
+
|
| 44 |
+
assert images.dim()==4
|
| 45 |
+
assert images.shape[0]==parameters.shape[0]
|
| 46 |
+
|
| 47 |
+
batch_size = parameters.shape[0]
|
| 48 |
+
mean = images.view(batch_size,-1).mean(1)
|
| 49 |
+
mean = mean.view(batch_size, 1, 1, 1)
|
| 50 |
+
parameters = parameters.view(batch_size, 1, 1, 1)
|
| 51 |
+
editted = (images-mean)*(parameters+1)+mean
|
| 52 |
+
editted = F.relu(editted)
|
| 53 |
+
editted = 1-F.relu(1-editted)
|
| 54 |
+
return editted
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class AdjustDehaze():
|
| 58 |
+
|
| 59 |
+
def __init__(self):
|
| 60 |
+
self.num_parameters = 1
|
| 61 |
+
self.window_names = ["parameter"]
|
| 62 |
+
self.slider_names = ["dehaze"]
|
| 63 |
+
|
| 64 |
+
def __call__(self, images, parameters):
|
| 65 |
+
"""
|
| 66 |
+
Takes a batch of images where B (the last dim) is the batch size
|
| 67 |
+
args:
|
| 68 |
+
images: torch.Tensor # B H W C
|
| 69 |
+
parameters :torch.Tensor # N
|
| 70 |
+
return:
|
| 71 |
+
output: torch.Tensor # B H W C
|
| 72 |
+
"""
|
| 73 |
+
assert images.dim()==4
|
| 74 |
+
batch_size = parameters.shape[0]
|
| 75 |
+
output = []
|
| 76 |
+
for image_index in range(batch_size):
|
| 77 |
+
image = images[image_index].numpy()
|
| 78 |
+
scale = max((image.shape[:2])) / 512.0
|
| 79 |
+
omega = float(parameters[image_index])
|
| 80 |
+
editted= dehaze.DarkPriorChannelDehaze(
|
| 81 |
+
wsize=int(15*scale), radius=int(80*scale), omega=omega,
|
| 82 |
+
t_min=0.25, refine=True)(image * 255.0) / 255.0
|
| 83 |
+
editted = torch.tensor(editted)
|
| 84 |
+
editted = F.relu(editted)
|
| 85 |
+
editted= 1-F.relu(1-editted)
|
| 86 |
+
output.append(editted)
|
| 87 |
+
output = torch.stack(output)
|
| 88 |
+
return output
|
| 89 |
+
|
| 90 |
+
class AdjustClarity():
|
| 91 |
+
def __init__(self):
|
| 92 |
+
self.num_parameters = 1
|
| 93 |
+
self.window_names = ["parameter"]
|
| 94 |
+
self.slider_names = ["clarity"]
|
| 95 |
+
|
| 96 |
+
def __call__(self, images, parameters):
|
| 97 |
+
"""
|
| 98 |
+
Takes a batch of images where B (the last dim) is the batch size
|
| 99 |
+
args:
|
| 100 |
+
images: torch.Tensor # B H W C
|
| 101 |
+
parameters :torch.Tensor # N
|
| 102 |
+
return:
|
| 103 |
+
output: torch.Tensor # B H W C
|
| 104 |
+
"""
|
| 105 |
+
assert images.dim()==4
|
| 106 |
+
batch_size = parameters.shape[0]
|
| 107 |
+
output = []
|
| 108 |
+
clarity = parameters.view(batch_size, 1, 1, 1)
|
| 109 |
+
for image in images:
|
| 110 |
+
input = image.numpy()
|
| 111 |
+
scale = max((input.shape[:2])) / 512.0
|
| 112 |
+
unsharped = cv2.bilateralFilter((input*255.0).astype(np.uint8),
|
| 113 |
+
int(32*scale), 50, 10*scale)/255.0
|
| 114 |
+
output.append(torch.tensor(unsharped))
|
| 115 |
+
output = torch.stack(output)
|
| 116 |
+
editted_images = images + (images-output) * clarity
|
| 117 |
+
|
| 118 |
+
return editted_images
|
| 119 |
+
|
| 120 |
+
class AdjustExposure():
|
| 121 |
+
def __init__(self):
|
| 122 |
+
self.num_parameters = 1
|
| 123 |
+
self.window_names = ["parameter"]
|
| 124 |
+
self.slider_names = ["exposure"]
|
| 125 |
+
|
| 126 |
+
def __call__(self, images, parameters):
|
| 127 |
+
batch_size = parameters.shape[0]
|
| 128 |
+
exposure = parameters.view(batch_size, 1, 1, 1)
|
| 129 |
+
output = images+exposure*5
|
| 130 |
+
return output
|
| 131 |
+
|
| 132 |
+
class AdjustTemp():
|
| 133 |
+
def __init__(self):
|
| 134 |
+
self.num_parameters = 1
|
| 135 |
+
self.window_names = ["parameter"]
|
| 136 |
+
self.slider_names = ["temp"]
|
| 137 |
+
|
| 138 |
+
def __call__(self, images, parameters):
|
| 139 |
+
batch_size = parameters.shape[0]
|
| 140 |
+
temp = parameters.view(batch_size, 1, 1, 1)
|
| 141 |
+
editted = torch.clone(images)
|
| 142 |
+
|
| 143 |
+
index_high = (temp>0).view(-1)
|
| 144 |
+
index_low = (temp<=0).view(-1)
|
| 145 |
+
|
| 146 |
+
editted[index_high,:,:,1] += temp[index_high,:,:,0]*1.6
|
| 147 |
+
editted[index_high,:,:,2] += temp[index_high,:,:,0]*2
|
| 148 |
+
editted[index_low,:,:,0] -= temp[index_low,:,:,0]*2.0
|
| 149 |
+
editted[index_low,:,:,1] -= temp[index_low,:,:,0]*1.0
|
| 150 |
+
|
| 151 |
+
return editted
|
| 152 |
+
class AdjustTint():
|
| 153 |
+
def __init__(self):
|
| 154 |
+
self.num_parameters = 1
|
| 155 |
+
self.window_names = ["parameter"]
|
| 156 |
+
self.slider_names = ["tint"]
|
| 157 |
+
|
| 158 |
+
def __call__(self, images, parameters):
|
| 159 |
+
batch_size = parameters.shape[0]
|
| 160 |
+
tint = parameters.view(batch_size, 1, 1, 1)
|
| 161 |
+
editted = torch.clone(images)
|
| 162 |
+
|
| 163 |
+
index_high = (tint>0).view(-1)
|
| 164 |
+
index_low = (tint<=0).view(-1)
|
| 165 |
+
|
| 166 |
+
editted[index_high,:,:,0] += tint[index_high,:,:,0]*2
|
| 167 |
+
editted[index_high,:,:,2] += tint[index_high,:,:,0]*1
|
| 168 |
+
editted[index_low,:,:,1] -= tint[index_low,:,:,0]*2
|
| 169 |
+
editted[index_low,:,:,2] -= tint[index_low,:,:,0]*1
|
| 170 |
+
|
| 171 |
+
return editted
|
| 172 |
+
class AdjustShadows:
|
| 173 |
+
def __init__(self):
|
| 174 |
+
self.num_parameters = 1
|
| 175 |
+
self.window_names = ["parameter"]
|
| 176 |
+
self.slider_names = ["shadows"]
|
| 177 |
+
|
| 178 |
+
def __call__(self, list_hsv, parameters):
|
| 179 |
+
batch_size = parameters.shape[0]
|
| 180 |
+
shadows = parameters.view(batch_size, 1, 1)
|
| 181 |
+
|
| 182 |
+
v = list_hsv[2]
|
| 183 |
+
|
| 184 |
+
# Calculate shadows mask
|
| 185 |
+
|
| 186 |
+
shadows_mask = 1 - torch.sigmoid((v - 0.0) * 5.0)
|
| 187 |
+
# Adjust v channel based on shadows mask
|
| 188 |
+
adjusted_v = v * (1 + shadows_mask * shadows * 5.0)
|
| 189 |
+
|
| 190 |
+
return [list_hsv[0], list_hsv[1], adjusted_v]
|
| 191 |
+
|
| 192 |
+
class AdjustHighlights: # I should change the sigmoid to torch.sigmoid
|
| 193 |
+
def __init__(self):
|
| 194 |
+
self.num_parameters = 1
|
| 195 |
+
self.window_names = ["parameter"]
|
| 196 |
+
self.slider_names = ["highlights"]
|
| 197 |
+
|
| 198 |
+
# def custom_sigmoid(self, x):
|
| 199 |
+
# return 1 / (1 + torch.exp(-x))
|
| 200 |
+
|
| 201 |
+
def __call__(self, list_hsv, parameters):
|
| 202 |
+
batch_size = parameters.shape[0]
|
| 203 |
+
highlights = parameters.view(batch_size, 1, 1)
|
| 204 |
+
|
| 205 |
+
v = list_hsv[2]
|
| 206 |
+
|
| 207 |
+
# Calculate highlights mask using custom sigmoid function
|
| 208 |
+
highlights_mask = torch.sigmoid((v - 1) * 5)
|
| 209 |
+
|
| 210 |
+
# Adjust v channel based on highlights mask
|
| 211 |
+
adjusted_v = 1 - (1 - v) * (1 - highlights_mask * highlights * 5)
|
| 212 |
+
|
| 213 |
+
return [list_hsv[0], list_hsv[1], adjusted_v]
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
class AdjustBlacks:
|
| 217 |
+
def __init__(self):
|
| 218 |
+
self.num_parameters = 1
|
| 219 |
+
self.window_names = ["parameter"]
|
| 220 |
+
self.slider_names = ["blacks"]
|
| 221 |
+
|
| 222 |
+
def __call__(self, list_hsv, parameters):
|
| 223 |
+
batch_size = parameters.shape[0]
|
| 224 |
+
blacks = parameters.view(batch_size, 1, 1)
|
| 225 |
+
blacks = blacks + 1
|
| 226 |
+
v = list_hsv[2]
|
| 227 |
+
|
| 228 |
+
# Calculate the adjustment factor
|
| 229 |
+
adjustment_factor = (torch.sqrt(blacks) - 1) * 0.2
|
| 230 |
+
|
| 231 |
+
# Adjust the v channel
|
| 232 |
+
adjusted_v = v + (1 - v) * adjustment_factor
|
| 233 |
+
|
| 234 |
+
return [list_hsv[0], list_hsv[1], adjusted_v]
|
| 235 |
+
|
| 236 |
+
class AdjustWhites:
|
| 237 |
+
def __init__(self):
|
| 238 |
+
self.num_parameters = 1
|
| 239 |
+
self.window_names = ["parameter"]
|
| 240 |
+
self.slider_names = ["whites"]
|
| 241 |
+
|
| 242 |
+
def __call__(self, list_hsv, parameters):
|
| 243 |
+
batch_size = parameters.shape[0]
|
| 244 |
+
whites= parameters.view(batch_size, 1, 1)
|
| 245 |
+
whites= whites+ 1
|
| 246 |
+
v = list_hsv[2]
|
| 247 |
+
|
| 248 |
+
# Calculate the adjustment factor
|
| 249 |
+
adjustment_factor = (torch.sqrt(whites) - 1) * 0.2
|
| 250 |
+
|
| 251 |
+
# Adjust the v channel
|
| 252 |
+
adjusted_v = v + v * adjustment_factor
|
| 253 |
+
|
| 254 |
+
return [list_hsv[0], list_hsv[1], adjusted_v]
|
| 255 |
+
|
| 256 |
+
class Bgr2Hsv:
|
| 257 |
+
def __init__(self):
|
| 258 |
+
self.num_parameters = 0
|
| 259 |
+
|
| 260 |
+
def __call__(self, images):
|
| 261 |
+
editted = images
|
| 262 |
+
|
| 263 |
+
max_bgr, _ = editted.max(dim=-1, keepdim=True)
|
| 264 |
+
min_bgr, _ = editted.min(dim=-1, keepdim=True)
|
| 265 |
+
|
| 266 |
+
b = editted[..., 0]
|
| 267 |
+
g = editted[..., 1]
|
| 268 |
+
r = editted[..., 2]
|
| 269 |
+
|
| 270 |
+
b_g = b - g
|
| 271 |
+
g_r = g - r
|
| 272 |
+
r_b = r - b
|
| 273 |
+
|
| 274 |
+
b_min_flg = (1 - F.relu(torch.sign(b_g))) * F.relu(torch.sign(r_b))
|
| 275 |
+
g_min_flg = (1 - F.relu(torch.sign(g_r))) * F.relu(torch.sign(b_g))
|
| 276 |
+
r_min_flg = (1 - F.relu(torch.sign(r_b))) * F.relu(torch.sign(g_r))
|
| 277 |
+
|
| 278 |
+
epsilon = 10**(-5)
|
| 279 |
+
h1 = 60 * g_r / (max_bgr.squeeze() - min_bgr.squeeze() + epsilon) + 60
|
| 280 |
+
h2 = 60 * b_g / (max_bgr.squeeze() - min_bgr.squeeze() + epsilon) + 180
|
| 281 |
+
h3 = 60 * r_b / (max_bgr.squeeze() - min_bgr.squeeze() + epsilon) + 300
|
| 282 |
+
h = h1 * b_min_flg + h2 * r_min_flg + h3 * g_min_flg
|
| 283 |
+
|
| 284 |
+
v = max_bgr.squeeze()
|
| 285 |
+
s = (max_bgr.squeeze() - min_bgr.squeeze()) / (max_bgr.squeeze() + epsilon)
|
| 286 |
+
|
| 287 |
+
return [h, s, v]
|
| 288 |
+
|
| 289 |
+
class AdjustVibrance:
|
| 290 |
+
def __init__(self):
|
| 291 |
+
self.num_parameters = 1
|
| 292 |
+
self.window_names = ["parameter"]
|
| 293 |
+
self.slider_names = ["vibrance"]
|
| 294 |
+
|
| 295 |
+
def __call__(self, list_hsv, parameters):
|
| 296 |
+
batch_size = parameters.shape[0]
|
| 297 |
+
vibrance= parameters.view(batch_size, 1, 1)
|
| 298 |
+
vibrance = vibrance + 1
|
| 299 |
+
s = list_hsv[1]
|
| 300 |
+
|
| 301 |
+
# Calculate vibrance flag using custom sigmoid function
|
| 302 |
+
vibrance_flg = -torch.sigmoid((s - 0.5) * 10) + 1
|
| 303 |
+
|
| 304 |
+
# Adjust the s channel
|
| 305 |
+
adjusted_s = s * vibrance * vibrance_flg + s * (1 - vibrance_flg)
|
| 306 |
+
|
| 307 |
+
return [list_hsv[0], adjusted_s, list_hsv[2]]
|
| 308 |
+
|
| 309 |
+
class AdjustSaturation:
|
| 310 |
+
def __init__(self):
|
| 311 |
+
self.num_parameters = 1
|
| 312 |
+
self.window_names = ["parameter"]
|
| 313 |
+
self.slider_names = ["saturation"]
|
| 314 |
+
|
| 315 |
+
def __call__(self, list_hsv, parameters):
|
| 316 |
+
batch_size = parameters.shape[0]
|
| 317 |
+
saturation = parameters.view(batch_size, 1, 1)
|
| 318 |
+
saturation = saturation+ 1
|
| 319 |
+
s = list_hsv[1]
|
| 320 |
+
|
| 321 |
+
# Adjust the saturation
|
| 322 |
+
s_ = s * saturation
|
| 323 |
+
s_ = F.relu(s_)
|
| 324 |
+
s_ = 1 - F.relu(1 - s_)
|
| 325 |
+
|
| 326 |
+
return [list_hsv[0], s_, list_hsv[2]]
|
| 327 |
+
|
| 328 |
+
class Hsv2Bgr:
|
| 329 |
+
def __init__(self):
|
| 330 |
+
self.num_parameters = 0
|
| 331 |
+
|
| 332 |
+
def __call__(self, list_hsv):
|
| 333 |
+
h, s, v = list_hsv
|
| 334 |
+
|
| 335 |
+
# Adjust h values
|
| 336 |
+
h = h * torch.relu(torch.sign(h-0)) * (1 - torch.relu(torch.sign(h-360))) + \
|
| 337 |
+
(h-360) * torch.relu(torch.sign(h-360)) * (1 - torch.relu(torch.sign(h-720))) + \
|
| 338 |
+
(h+360) * torch.relu(torch.sign(h+360)) * (1 - torch.relu(torch.sign(h-0)))
|
| 339 |
+
|
| 340 |
+
# Calculate h flags
|
| 341 |
+
h60_flg = torch.relu(torch.sign(h-0)) * (1 - torch.relu(torch.sign(h-60)))
|
| 342 |
+
h120_flg = torch.relu(torch.sign(h-60)) * (1 - torch.relu(torch.sign(h-120)))
|
| 343 |
+
h180_flg = torch.relu(torch.sign(h-120)) * (1 - torch.relu(torch.sign(h-180)))
|
| 344 |
+
h240_flg = torch.relu(torch.sign(h-180)) * (1 - torch.relu(torch.sign(h-240)))
|
| 345 |
+
h300_flg = torch.relu(torch.sign(h-240)) * (1 - torch.relu(torch.sign(h-300)))
|
| 346 |
+
h360_flg = torch.relu(torch.sign(h-300)) * (1 - torch.relu(torch.sign(h-360)))
|
| 347 |
+
|
| 348 |
+
C = v * s
|
| 349 |
+
b = v - C + C * (h240_flg + h300_flg) + C * ((h / 60 - 2) * h180_flg + (6 - h / 60) * h360_flg)
|
| 350 |
+
g = v - C + C * (h120_flg + h180_flg) + C * ((h / 60) * h60_flg + (4 - h / 60) * h240_flg)
|
| 351 |
+
r = v - C + C * (h60_flg + h360_flg) + C * ((h / 60 - 4) * h300_flg + (2 - h / 60) * h120_flg)
|
| 352 |
+
|
| 353 |
+
# Add an extra dimension to b, g, r to concatenate them correctly
|
| 354 |
+
b = b.unsqueeze(-1)
|
| 355 |
+
g = g.unsqueeze(-1)
|
| 356 |
+
r = r.unsqueeze(-1)
|
| 357 |
+
|
| 358 |
+
bgr = torch.cat([b, g, r], dim=-1)
|
| 359 |
+
|
| 360 |
+
return bgr
|
| 361 |
+
|
| 362 |
+
# class Srgb2Photopro:
|
| 363 |
+
# def __init__(self):
|
| 364 |
+
# self.num_parameters = 0
|
| 365 |
+
|
| 366 |
+
# def __call__(self, images):
|
| 367 |
+
# srgb = images.clone()
|
| 368 |
+
# k = 0.055
|
| 369 |
+
# thre_srgb = 0.04045
|
| 370 |
+
|
| 371 |
+
# a = torch.tensor([[0.4124564, 0.3575761, 0.1804375],
|
| 372 |
+
# [0.2126729, 0.7151522, 0.0721750],
|
| 373 |
+
# [0.0193339, 0.1191920, 0.9503041]], dtype=torch.float32)
|
| 374 |
+
# b = torch.tensor([[1.3459433, -0.2556075, -0.0511118],
|
| 375 |
+
# [-0.5445989, 1.5081673, 0.0205351],
|
| 376 |
+
# [0.0000000, 0.0000000, 1.2118128]], dtype=torch.float32)
|
| 377 |
+
|
| 378 |
+
# M = torch.matmul(b, a)
|
| 379 |
+
# M = M / M.sum(dim=1, keepdim=True)
|
| 380 |
+
|
| 381 |
+
# thre_photopro = 1 / 512.0
|
| 382 |
+
|
| 383 |
+
# # sRGB to linear RGB
|
| 384 |
+
# srgb = torch.where(srgb <= thre_srgb, srgb / 12.92, ((srgb + k) / (1 + k)) ** 2.4)
|
| 385 |
+
|
| 386 |
+
# sb = srgb[..., 0:1]
|
| 387 |
+
# sg = srgb[..., 1:2]
|
| 388 |
+
# sr = srgb[..., 2:3]
|
| 389 |
+
|
| 390 |
+
# photopror = sr * M[0][0] + sg * M[0][1] + sb * M[0][2]
|
| 391 |
+
# photoprog = sr * M[1][0] + sg * M[1][1] + sb * M[1][2]
|
| 392 |
+
# photoprob = sr * M[2][0] + sg * M[2][1] + sb * M[2][2]
|
| 393 |
+
|
| 394 |
+
# photopro = torch.cat((photoprob, photoprog, photopror), dim=-1)
|
| 395 |
+
# photopro = torch.clamp(photopro, 0, 1)
|
| 396 |
+
# photopro = torch.where(photopro >= thre_photopro, photopro ** (1 / 1.8), photopro * 16)
|
| 397 |
+
|
| 398 |
+
# return photopro
|
| 399 |
+
|
| 400 |
+
class Srgb2Photopro:
|
| 401 |
+
def __init__(self):
|
| 402 |
+
self.num_parameters = 0
|
| 403 |
+
k = 0.055
|
| 404 |
+
thre_srgb = 0.04045
|
| 405 |
+
|
| 406 |
+
self.k = k
|
| 407 |
+
self.thre_srgb = thre_srgb
|
| 408 |
+
self.thre_photopro = 1 / 512.0
|
| 409 |
+
|
| 410 |
+
# Transformation matrices
|
| 411 |
+
a = torch.tensor([[0.4124564, 0.3575761, 0.1804375],
|
| 412 |
+
[0.2126729, 0.7151522, 0.0721750],
|
| 413 |
+
[0.0193339, 0.1191920, 0.9503041]], dtype=torch.float32)
|
| 414 |
+
b = torch.tensor([[1.3459433, -0.2556075, -0.0511118],
|
| 415 |
+
[-0.5445989, 1.5081673, 0.0205351],
|
| 416 |
+
[0.0000000, 0.0000000, 1.2118128]], dtype=torch.float32)
|
| 417 |
+
|
| 418 |
+
self.M = torch.matmul(b, a)
|
| 419 |
+
self.M = self.M / self.M.sum(dim=1, keepdim=True)
|
| 420 |
+
def __call__(self, images):
|
| 421 |
+
srgb = images.clone()
|
| 422 |
+
|
| 423 |
+
with torch.no_grad(): # Disable gradient computation for inference
|
| 424 |
+
# sRGB to linear RGB
|
| 425 |
+
srgb = torch.where(srgb <= self.thre_srgb, srgb / 12.92, ((srgb + self.k) / (1 + self.k)) ** 2.4)
|
| 426 |
+
|
| 427 |
+
sb = srgb[..., 0:1]
|
| 428 |
+
sg = srgb[..., 1:2]
|
| 429 |
+
sr = srgb[..., 2:3]
|
| 430 |
+
|
| 431 |
+
# Apply the transformation matrix
|
| 432 |
+
photopror = sr * self.M[0][0] + sg * self.M[0][1] + sb * self.M[0][2]
|
| 433 |
+
photoprog = sr * self.M[1][0] + sg * self.M[1][1] + sb * self.M[1][2]
|
| 434 |
+
photoprob = sr * self.M[2][0] + sg * self.M[2][1] + sb * self.M[2][2]
|
| 435 |
+
|
| 436 |
+
photopro = torch.cat((photoprob, photoprog, photopror), dim=-1)
|
| 437 |
+
photopro = torch.clamp(photopro, 0, 1)
|
| 438 |
+
|
| 439 |
+
# Apply the Photopro gamma correction
|
| 440 |
+
photopro = torch.where(photopro >= self.thre_photopro, photopro ** (1 / 1.8), photopro * 16)
|
| 441 |
+
|
| 442 |
+
# Clear intermediate tensors
|
| 443 |
+
|
| 444 |
+
return photopro
|
| 445 |
+
|
| 446 |
+
# class Photopro2Srgb:
|
| 447 |
+
# def __init__(self):
|
| 448 |
+
# self.num_parameters = 0
|
| 449 |
+
|
| 450 |
+
# def __call__(self, photopro_tensor):
|
| 451 |
+
# photopro = photopro_tensor.clone() # Make a copy to avoid modifying the input tensor
|
| 452 |
+
# thre_photopro = 1/512.0*16
|
| 453 |
+
|
| 454 |
+
# a = torch.tensor([[0.4124564, 0.3575761, 0.1804375],
|
| 455 |
+
# [0.2126729, 0.7151522, 0.0721750],
|
| 456 |
+
# [0.0193339, 0.1191920, 0.9503041]], dtype=torch.float32)
|
| 457 |
+
# b = torch.tensor([[1.3459433, -0.2556075, -0.0511118],
|
| 458 |
+
# [-0.5445989, 1.5081673, 0.0205351],
|
| 459 |
+
# [0.0000000, 0.0000000, 1.2118128]], dtype=torch.float32)
|
| 460 |
+
# M = torch.matmul(b, a)
|
| 461 |
+
# M = M / M.sum(dim=1, keepdim=True)
|
| 462 |
+
# M = torch.linalg.inv(M)
|
| 463 |
+
# k = 0.055
|
| 464 |
+
# thre_srgb = 0.04045 / 12.92
|
| 465 |
+
|
| 466 |
+
# # Apply transformations
|
| 467 |
+
# mask = photopro < thre_photopro
|
| 468 |
+
# photopro[mask] *= 1.0 / 16
|
| 469 |
+
# photopro[~mask] = photopro[~mask] ** 1.8
|
| 470 |
+
|
| 471 |
+
# photoprob = photopro[:, :, :, 0:1]
|
| 472 |
+
# photoprog = photopro[:, :, :, 1:2]
|
| 473 |
+
# photopror = photopro[:, :, :, 2:3]
|
| 474 |
+
|
| 475 |
+
# sr = photopror * M[0, 0] + photoprog * M[0, 1] + photoprob * M[0, 2]
|
| 476 |
+
# sg = photopror * M[1, 0] + photoprog * M[1, 1] + photoprob * M[1, 2]
|
| 477 |
+
# sb = photopror * M[2, 0] + photoprog * M[2, 1] + photoprob * M[2, 2]
|
| 478 |
+
|
| 479 |
+
# srgb = torch.cat((sb, sg, sr), dim=-1)
|
| 480 |
+
|
| 481 |
+
# # Clip and apply final transformations
|
| 482 |
+
# srgb = torch.clamp(srgb, 0, 1)
|
| 483 |
+
# mask = srgb > thre_srgb
|
| 484 |
+
# srgb[mask] = (1 + k) * srgb[mask] ** (1 / 2.4) - k
|
| 485 |
+
# srgb[~mask] *= 12.92
|
| 486 |
+
|
| 487 |
+
# return srgb
|
| 488 |
+
|
| 489 |
+
class Photopro2Srgb:
|
| 490 |
+
def __init__(self):
|
| 491 |
+
self.num_parameters = 0
|
| 492 |
+
self.k = 0.055
|
| 493 |
+
self.thre_srgb = 0.04045 / 12.92
|
| 494 |
+
self.thre_photopro = 1 / 512.0 * 16
|
| 495 |
+
|
| 496 |
+
# Transformation matrices
|
| 497 |
+
a = torch.tensor([[0.4124564, 0.3575761, 0.1804375],
|
| 498 |
+
[0.2126729, 0.7151522, 0.0721750],
|
| 499 |
+
[0.0193339, 0.1191920, 0.9503041]], dtype=torch.float32)
|
| 500 |
+
b = torch.tensor([[1.3459433, -0.2556075, -0.0511118],
|
| 501 |
+
[-0.5445989, 1.5081673, 0.0205351],
|
| 502 |
+
[0.0000000, 0.0000000, 1.2118128]], dtype=torch.float32)
|
| 503 |
+
|
| 504 |
+
self.M = torch.matmul(b, a)
|
| 505 |
+
self.M = self.M / self.M.sum(dim=1, keepdim=True)
|
| 506 |
+
self.M_inv = torch.linalg.inv(self.M)
|
| 507 |
+
|
| 508 |
+
def __call__(self, photopro_tensor):
|
| 509 |
+
with torch.no_grad(): # Disable gradient computation for inference
|
| 510 |
+
photopro = photopro_tensor.clone() # Make a copy to avoid modifying the input tensor
|
| 511 |
+
# photopro = photopro.to(torch.float16)
|
| 512 |
+
# Apply gamma correction
|
| 513 |
+
mask = photopro < self.thre_photopro
|
| 514 |
+
photopro[mask] *= 1.0 / 16
|
| 515 |
+
photopro[~mask] = photopro[~mask] ** 1.8
|
| 516 |
+
|
| 517 |
+
# Separate channels
|
| 518 |
+
photoprob = photopro[..., 0:1]
|
| 519 |
+
photoprog = photopro[..., 1:2]
|
| 520 |
+
photopror = photopro[..., 2:3]
|
| 521 |
+
|
| 522 |
+
# Apply the inverse transformation matrix
|
| 523 |
+
sr = photopror * self.M_inv[0, 0] + photoprog * self.M_inv[0, 1] + photoprob * self.M_inv[0, 2]
|
| 524 |
+
sg = photopror * self.M_inv[1, 0] + photoprog * self.M_inv[1, 1] + photoprob * self.M_inv[1, 2]
|
| 525 |
+
sb = photopror * self.M_inv[2, 0] + photoprog * self.M_inv[2, 1] + photoprob * self.M_inv[2, 2]
|
| 526 |
+
del photopror, photoprog, photoprob
|
| 527 |
+
srgb = torch.cat((sb, sg, sr), dim=-1)
|
| 528 |
+
del sr, sg, sb
|
| 529 |
+
# Apply sRGB transformation
|
| 530 |
+
srgb = torch.clamp(srgb, 0, 1)
|
| 531 |
+
mask = srgb > self.thre_srgb
|
| 532 |
+
srgb[mask] = (1 + self.k) * srgb[mask] ** (1 / 2.4) - self.k
|
| 533 |
+
srgb[~mask] *= 12.92
|
| 534 |
+
|
| 535 |
+
# Clear intermediate tensors
|
| 536 |
+
return srgb
|
| 537 |
+
|
| 538 |
+
class PhotoEditor():
|
| 539 |
+
def __init__(self,sliders= 'all'):
|
| 540 |
+
self.edit_funcs = [Srgb2Photopro(), AdjustDehaze(), AdjustClarity(), AdjustContrast(),
|
| 541 |
+
SigmoidInverse(), AdjustExposure(), AdjustTemp(), AdjustTint(),
|
| 542 |
+
Sigmoid(), Bgr2Hsv(), AdjustWhites(), AdjustBlacks(), AdjustHighlights(),
|
| 543 |
+
AdjustShadows(), AdjustVibrance(), AdjustSaturation(), Hsv2Bgr(), Photopro2Srgb()]
|
| 544 |
+
self.sliders = sliders
|
| 545 |
+
self.num_parameters = 0
|
| 546 |
+
if sliders=='all':
|
| 547 |
+
for edit_func in self.edit_funcs:
|
| 548 |
+
self.num_parameters += edit_func.num_parameters
|
| 549 |
+
else:
|
| 550 |
+
for edit_func in self.edit_funcs:
|
| 551 |
+
if edit_func.num_parameters==0:
|
| 552 |
+
self.num_parameters += edit_func.num_parameters
|
| 553 |
+
elif edit_func.slider_names[0] in sliders:
|
| 554 |
+
self.num_parameters += edit_func.num_parameters
|
| 555 |
+
|
| 556 |
+
def __call__(self, images, parameters,use_photopro_image=False):
|
| 557 |
+
editted_images = images.clone()
|
| 558 |
+
num_parameters = 0
|
| 559 |
+
photopro_image = None
|
| 560 |
+
assert images.shape[-1]==3 #make sure that the image shape is (B,H,W,C)
|
| 561 |
+
assert images.dim()==4 #make sure that the image is batched
|
| 562 |
+
for edit_func in self.edit_funcs:
|
| 563 |
+
if use_photopro_image and type(edit_func)==Srgb2Photopro:
|
| 564 |
+
continue
|
| 565 |
+
if self.sliders=='all':
|
| 566 |
+
|
| 567 |
+
if edit_func.num_parameters == 0:
|
| 568 |
+
editted_images = edit_func(editted_images)
|
| 569 |
+
else:
|
| 570 |
+
editted_images = edit_func(editted_images,
|
| 571 |
+
parameters[:,num_parameters : num_parameters + edit_func.num_parameters])
|
| 572 |
+
num_parameters = num_parameters + edit_func.num_parameters
|
| 573 |
+
|
| 574 |
+
else:
|
| 575 |
+
|
| 576 |
+
if edit_func.num_parameters == 0:
|
| 577 |
+
editted_images = edit_func(editted_images)
|
| 578 |
+
else:
|
| 579 |
+
if edit_func.slider_names[0] in self.sliders:
|
| 580 |
+
editted_images = edit_func(editted_images,
|
| 581 |
+
parameters[:,num_parameters : num_parameters + edit_func.num_parameters])
|
| 582 |
+
num_parameters = num_parameters + edit_func.num_parameters
|
| 583 |
+
if type(edit_func)==Srgb2Photopro and use_photopro_image==False:
|
| 584 |
+
photopro_image = editted_images
|
| 585 |
+
|
| 586 |
+
editted_images = editted_images.type(torch.float32)
|
| 587 |
+
|
| 588 |
+
if use_photopro_image:
|
| 589 |
+
return editted_images
|
| 590 |
+
else:
|
| 591 |
+
return editted_images, photopro_image
|