photo-enhancer / src /train.py
zakaria-narjis's picture
add src and models
998f96a
raw
history blame
10.3 kB
import yaml
import time
import random
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
import time
from envs.photo_env import PhotoEnhancementEnv
from envs.photo_env import PhotoEnhancementEnvTest
from sac.sac_algorithm import SAC
import multiprocessing as mp
import argparse
import logging
from sac.utils import *
from tqdm.auto import tqdm
from datetime import datetime
import os
from pathlib import Path
import re
def sanitize_filename(name):
return re.sub(r'[^\w\-_\. ]', '_', name)
def getdatetime():
return datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
class Config(object):
def __init__(self, dictionary):
self.__dict__.update(dictionary)
def make_dirs_and_open(file_path, mode):
os.makedirs(os.path.dirname(file_path), exist_ok=True)
return open(file_path, mode)
def main():
current_dir = Path(__file__).parent.absolute()
parser = argparse.ArgumentParser()
parser.add_argument('experiment_tag', help='experiment tag')
parser.add_argument('sac_config', help='YAML sac config file')
parser.add_argument('env_config', help='YAML env config file')
parser.add_argument('outdir', nargs='?', type=str, help='directory to put experiment results',default=os.path.join(current_dir.parent, 'experiments/runs'))
parser.add_argument('save_model', nargs='?',type=bool, default=True)
parser.add_argument('--logger_level', type=int, default=logging.INFO)
args = parser.parse_args()
logger = logging.getLogger(__name__)
# Configure logging to console
console_handler = logging.StreamHandler()
console_handler.setLevel(args.logger_level)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
logger.setLevel(args.logger_level)
with open(args.sac_config) as f:
config_dict =yaml.load(f, Loader=yaml.FullLoader)
with open(args.env_config) as f:
env_config_dict =yaml.load(f, Loader=yaml.FullLoader)
sac_config = Config(config_dict)
env_config = Config(env_config_dict)
exp_name = sanitize_filename(sac_config.exp_name)
exp_tag = sanitize_filename(args.experiment_tag)
run_name = f"{exp_name}__{exp_tag}__{getdatetime()}"
run_name = run_name[:255] # Truncate to 255 characters to avoid potential issues with very long paths
run_dir = os.path.join(args.outdir, run_name)
with make_dirs_and_open(os.path.join(run_dir, 'configs/sac_config.yaml'), 'w') as f:
yaml.dump(config_dict, f, indent=4, default_flow_style=False)
with make_dirs_and_open(os.path.join(run_dir, 'configs/env_config.yaml'), 'w') as f:
yaml.dump(env_config_dict, f, indent=4, default_flow_style=False)
SEED = sac_config.seed
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = sac_config.torch_deterministic
torch.autograd.set_detect_anomaly(True)
print()
env = PhotoEnhancementEnv(
batch_size=env_config.train_batch_size,
imsize=env_config.imsize,
training_mode=True,
done_threshold=env_config.threshold_psnr,
edit_sliders=env_config.sliders_to_use,
features_size=env_config.features_size,
discretize=env_config.discretize,
discretize_step= env_config.discretize_step,
use_txt_features=env_config.use_txt_features,
augment_data=env_config.augment_data,
pre_encoding_device=env_config.pre_encoding_device,
pre_load_images = env_config.pre_load_images,
preprocessor_agent_path=env_config.preprocessor_agent_path,
logger=None
)
test_env = PhotoEnhancementEnvTest(
batch_size=env_config.test_batch_size,
imsize=env_config.imsize,
training_mode=False,
done_threshold=env_config.threshold_psnr,
edit_sliders=env_config.sliders_to_use,
features_size=env_config.features_size,
discretize=env_config.discretize,
discretize_step = env_config.discretize_step,
use_txt_features=env_config.use_txt_features,
augment_data=env_config.augment_data,
pre_encoding_device=env_config.pre_encoding_device,
pre_load_images = env_config.pre_load_images,
preprocessor_agent_path=env_config.preprocessor_agent_path,
logger=None
)
logger.info(f'Sliders used {env.edit_sliders}')
logger.info(f'Number of sliders used { env.num_parameters}')
logger.info(f'Sliders used {test_env .edit_sliders}')
logger.info(f'Number of sliders used {test_env .num_parameters}')
writer = SummaryWriter(run_dir)
writer.add_text(
"SAC_hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(sac_config).items()])),
)
writer.add_text(
"env_parameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(env_config).items()])),
)
try:
agent = SAC(env,sac_config,writer)
if env_config.preprocessor_agent_path!=None: #Double agent mode
test_env.preprocessor_agent = env.preprocessor_agent # share the same preprocessor agent
agent.backbone.model.load_state_dict(env.preprocessor_agent.backbone.model.state_dict())
agent.backbone.eval().requires_grad_(False)
agent.start_time = time.time()
logger.info(f'Start Training at {getdatetime()}')
for i in tqdm(range(sac_config.total_timesteps), position=0, leave=True):
episode_count = 0
agent.reset_env()
envs_mean_rewards =[]
if agent.global_step>env_config.backbone_warmup:
agent.backbone.train().requires_grad_(True)
while True:
episode_count+=1
agent.global_step+=1
rewards,batch_dones = agent.train()
envs_mean_rewards.append(rewards.mean().item())
if(batch_dones==True).any():
num_env_done = int(batch_dones.sum().item())
agent.writer.add_scalar("charts/num_env_done", num_env_done , agent.global_step)
if agent.global_step % 100 == 0:
ens_mean_episodic_return = sum(envs_mean_rewards)
agent.writer.add_scalar("charts/mean_episodic_return", ens_mean_episodic_return, agent.global_step)
if (batch_dones==True).all()==True or episode_count==sac_config.max_episode_timesteps:
episode_count=0
break
if agent.global_step%200==0:
agent.backbone.eval().requires_grad_(False)
agent.actor.eval().requires_grad_(False)
agent.qf1.eval().requires_grad_(False)
agent.qf2.eval().requires_grad_(False)
with torch.no_grad():
n_images = 5
obs = test_env.reset()
actions = agent.actor.get_action(**obs.to(sac_config.device))
_,rewards,dones = test_env.step(actions[0])
agent.writer.add_scalar("charts/test_mean_episodic_return", rewards.mean().item(), agent.global_step)
if env_config.preprocessor_agent_path!=None:
agent.writer.add_images("test_images",test_env.original_image[:n_images],0)
agent.writer.add_images("test_images",test_env.state['source_image'][:n_images],1)
agent.writer.add_images("test_images",test_env.state['enhanced_image'][:n_images],2)
agent.writer.add_images("test_images",test_env.state['target_image'][:n_images],3)
else:
agent.writer.add_images("test_images",test_env.state['source_image'][:n_images],0)
agent.writer.add_images("test_images",test_env.state['enhanced_image'][:n_images],1)
agent.writer.add_images("test_images",test_env.state['target_image'][:n_images],2)
agent.backbone.train().requires_grad_(True)
agent.actor.train().requires_grad_(True)
agent.qf1.train().requires_grad_(True)
agent.qf2.train().requires_grad_(True)
logger.info(f'Ended training at {getdatetime()}')
if args.save_model:
models_dir = os.path.join(run_dir, 'models')
os.makedirs(models_dir, exist_ok=True)
logger.info(f"Saving models in {models_dir}")
torch.save(agent.backbone.state_dict(), run_dir+'/models/backbone.pth')
save_actor_head(agent.actor, run_dir+'/models/actor_head.pth')
save_critic_head(agent.qf1, run_dir+'/models/qf1_head.pth')
save_critic_head(agent.qf2, run_dir+'/models/qf2_head.pth')
writer.close()
except Exception as e:
logger.exception("An error occurred during training")
if agent.global_step>1000:
if args.save_model:
models_dir = os.path.join(run_dir, 'models')
os.makedirs(models_dir, exist_ok=True)
logger.info(f"Saving models after exception in {models_dir}")
torch.save(agent.backbone.state_dict(), run_dir+'/models/backbone.pth')
save_actor_head(agent.actor, run_dir+'/models/actor_head.pth')
save_critic_head(agent.qf1, run_dir+'/models/qf1_head.pth')
save_critic_head(agent.qf2, run_dir+'/models/qf2_head.pth')
writer.close()
if __name__=="__main__":
main()