Spaces:
Sleeping
Sleeping
File size: 12,340 Bytes
af79ab5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import streamlit as st
import torch
from PIL import Image
import numpy as np
from streamlit_image_comparison import image_comparison
from src.envs.new_edit_photo import PhotoEditor
from src.sac.sac_inference import InferenceAgent
import yaml
import os
from src.envs.photo_env import PhotoEnhancementEnvTest
from tensordict import TensorDict
import torchvision.transforms.v2.functional as F
from streamlit import cache_resource
import pandas as pd
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource
from bokeh.palettes import Spectral3
# Set page config to wide mode
st.set_page_config(layout="wide")
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# DEVICE = torch.device("cpu")
MODEL_PATH = "experiments/ResNet_10_sliders__224_128_aug__2024-07-23_21-23-35"
SLIDERS = ['temp','tint','exposure', 'contrast','highlights','shadows', 'whites', 'blacks','vibrance','saturation']
SLIDERS_ORD = ['contrast','exposure','temp','tint','whites','blacks','highlights','shadows','vibrance','saturation']
class Config(object):
def __init__(self,dictionary):
self.__dict__.update(dictionary)
@cache_resource
def load_preprocessor_agent(preprocessor_agent_path,device):
with open(os.path.join(preprocessor_agent_path,"configs/sac_config.yaml")) as f:
sac_config_dict = yaml.load(f, Loader=yaml.FullLoader)
with open(os.path.join(preprocessor_agent_path,"configs/env_config.yaml")) as f:
env_config_dict = yaml.load(f, Loader=yaml.FullLoader)
with open(os.path.join("src/configs/inference_config.yaml")) as f:
inf_config_dict = yaml.load(f, Loader=yaml.FullLoader)
inference_config = Config(inf_config_dict)
sac_config = Config(sac_config_dict)
env_config = Config(env_config_dict)
inference_env = PhotoEnhancementEnvTest(
batch_size=env_config.train_batch_size,
imsize=env_config.imsize,
training_mode=None,
done_threshold=env_config.threshold_psnr,
edit_sliders=env_config.sliders_to_use,
features_size=env_config.features_size,
discretize=env_config.discretize,
discretize_step=env_config.discretize_step,
use_txt_features=env_config.use_txt_features if hasattr(env_config,'use_txt_features') else False,
augment_data=False,
pre_encoding_device=device,
pre_load_images=False,
logger=None
)
inference_config.device = device
preprocessor_agent = InferenceAgent(inference_env, inference_config)
preprocessor_agent.device = device
preprocessor_agent.load_backbone(os.path.join(preprocessor_agent_path,'models','backbone.pth'))
preprocessor_agent.load_actor_weights(os.path.join(preprocessor_agent_path,'models','actor_head.pth'))
preprocessor_agent.load_critics_weights(os.path.join(preprocessor_agent_path,'models','qf1_head.pth'),
os.path.join(preprocessor_agent_path,'models','qf2_head.pth'))
return preprocessor_agent
enhancer_agent = load_preprocessor_agent(MODEL_PATH,DEVICE)
photo_editor = PhotoEditor(SLIDERS)
def enhance_image(image:np.array, params:dict):
input_image = image.unsqueeze(0).to(DEVICE)
parameters = [params[param_name]/100.0 for param_name in SLIDERS_ORD]
parameters = torch.tensor(parameters).unsqueeze(0).to(DEVICE)
enhanced_image = photo_editor(input_image,parameters)
enhanced_image = enhanced_image.squeeze(0).cpu().detach().numpy()
enhanced_image = np.clip(enhanced_image, 0, 1)
enhanced_image = (enhanced_image*255).astype(np.uint8)
return enhanced_image
def auto_enhance(image,deterministic=True):
input_image = image.unsqueeze(0).to(DEVICE)
input_image = input_image.permute(0,3,1,2)
IMAGE_SIZE = enhancer_agent.env.imsize
input_image = F.resize(input_image, (IMAGE_SIZE, IMAGE_SIZE), interpolation=F.InterpolationMode.BICUBIC)
batch_observation = TensorDict(
{
"batch_images":input_image,
},
batch_size = [input_image.shape[0]],
)
parameters = enhancer_agent.act(batch_observation,deterministic=deterministic,n_samples=0)
parameters = parameters.squeeze(0)*100.0
parameters = torch.round(parameters)
output_parameters = []
index = 0
for slider in SLIDERS_ORD:
if slider in enhancer_agent.env.edit_sliders:
output_parameters.append(parameters[index].item())
index += 1
else:
output_parameters.append(0)
return output_parameters
def slider_callback():
for name in SLIDERS:
st.session_state.params[name] = st.session_state[f"slider_{name}"]
image_tensor = torch.from_numpy(st.session_state.original_image).float() / 255.0
st.session_state.enhanced_image = enhance_image(image_tensor, st.session_state.params)
def auto_random_enhance_callback():
image_tensor = torch.from_numpy(st.session_state.original_image).float() / 255.0
auto_params = auto_enhance(image_tensor,deterministic=False)
for i, name in enumerate(SLIDERS_ORD):
st.session_state[f"slider_{name}"] = int(auto_params[i])
st.session_state.params[name] = int(auto_params[i])
st.session_state.enhanced_image = enhance_image(image_tensor, st.session_state.params)
def auto_enhance_callback():
image_tensor = torch.from_numpy(st.session_state.original_image).float() / 255.0
auto_params = auto_enhance(image_tensor)
for i, name in enumerate(SLIDERS_ORD):
st.session_state[f"slider_{name}"] = int(auto_params[i])
st.session_state.params[name] = int(auto_params[i])
st.session_state.enhanced_image = enhance_image(image_tensor, st.session_state.params)
def reset_sliders():
for name in SLIDERS:
st.session_state[f"slider_{name}"] = 0
st.session_state.params[name] = 0
# st.session_state.enhanced_image = enhance_image(image_tensor, st.session_state.params)
st.session_state.enhanced_image = st.session_state.original_image
def reset_on_upload():
st.session_state.original_image = None
reset_sliders()
def create_smooth_histogram(image):
# Compute histograms for each channel
bins = np.linspace(0, 255, 256)
hist_r, _ = np.histogram(image[..., 0], bins=bins)
hist_g, _ = np.histogram(image[..., 1], bins=bins)
hist_b, _ = np.histogram(image[..., 2], bins=bins)
# Normalize the histograms
def normalize_histogram(hist):
hist_central = hist[1:-1]
hist_max = np.max(hist_central)
hist_min = np.min(hist_central)
hist_normalized = (hist_central - hist_min) / (hist_max - hist_min)
hist[0] = min(hist[0] / hist_max, 1)
hist[-1] = min(hist[-1] / hist_max, 1)
return np.concatenate(([hist[0]], hist_normalized, [hist[-1]]))
hist_r_norm = normalize_histogram(hist_r)
hist_g_norm = normalize_histogram(hist_g)
hist_b_norm = normalize_histogram(hist_b)
# Create Bokeh figure with transparent background
p = figure(width=300, height=150, toolbar_location=None,
x_range=(0, 255), y_range=(0, 1.1),
background_fill_color=None,
border_fill_color=None,
outline_line_color=None)
# Remove all axes, labels, and grids
p.axis.visible = False
p.xgrid.grid_line_color = None
p.ygrid.grid_line_color = None
# Create ColumnDataSource for each channel
source_r = ColumnDataSource(data=dict(left=bins[:-1], right=bins[1:], top=hist_r_norm))
source_g = ColumnDataSource(data=dict(left=bins[:-1], right=bins[1:], top=hist_g_norm))
source_b = ColumnDataSource(data=dict(left=bins[:-1], right=bins[1:], top=hist_b_norm))
# Plot the histograms
p.quad(bottom=0, top='top', left='left', right='right', source=source_r,
fill_color="red", fill_alpha=0.9, line_color=None)
p.quad(bottom=0, top='top', left='left', right='right', source=source_g,
fill_color="green", fill_alpha=0.9, line_color=None)
p.quad(bottom=0, top='top', left='left', right='right', source=source_b,
fill_color="blue", fill_alpha=0.9, line_color=None)
# Remove padding
p.min_border_left = 0
p.min_border_right = 0
p.min_border_top = 0
p.min_border_bottom = 0
return p
# In your Streamlit app
def plot_histogram_streamlit(image):
histogram = create_smooth_histogram(image)
st.sidebar.bokeh_chart(histogram, use_container_width=True)
# Initialize session state
if 'enhanced_image' not in st.session_state:
st.session_state.enhanced_image = None
if 'original_image' not in st.session_state:
st.session_state.original_image = None
if 'params' not in st.session_state:
st.session_state.params = {name: 0 for name in SLIDERS}
for name in SLIDERS:
if f"slider_{name}" not in st.session_state:
st.session_state[f"slider_{name}"] = 0
# Set up the Streamlit app
st.title("Photo Enhancement App")
# File uploader in the main area
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png",".tif"], on_change=reset_on_upload)
if uploaded_file is not None:
# Load the original image
st.session_state.original_image = np.array(Image.open(uploaded_file).convert('RGB'),dtype=np.uint16)
# Enhance the image initially
if st.session_state.enhanced_image is None:
st.session_state.enhanced_image = st.session_state.original_image
# Sidebar for controls
st.sidebar.title("Controls")
# Display histogram
st.sidebar.subheader("Colors Histogram")
plot_histogram_streamlit(st.session_state.enhanced_image)
# Select box to choose which image to display
display_option = st.sidebar.selectbox(
"Select view mode",
("Comparison", "Enhanced")
)
# Create two columns for the buttons
col1, col2,col3 = st.sidebar.columns(3)
# Button for auto-enhancement
with col1:
st.button("Auto Enhance", on_click=auto_enhance_callback, key="auto_enhance_button",use_container_width=True)
with col2:
st.button("Auto Random Enhance", on_click=auto_random_enhance_callback, key="auto_random_enhance_button",use_container_width=True)
# Button for resetting sliders
with col3:
st.button("Reset", on_click=reset_sliders, key="reset_button",use_container_width=True)
st.sidebar.subheader("Adjustments")
slider_names = SLIDERS
for name in slider_names:
if f"slider_{name}" not in st.session_state:
st.session_state[f"slider_{name}"] = 0
st.sidebar.slider(
name.capitalize(),
min_value=-100,
max_value=100,
value=st.session_state[f"slider_{name}"],
key=f"slider_{name}",
on_change=slider_callback
)
# Create a single column to maximize width
left_spacer, content_column, right_spacer = st.columns([1, 3, 1])
with content_column:
if display_option == "Enhanced":
if st.session_state.enhanced_image is not None:
st.image(st.session_state.enhanced_image.astype(np.uint8), caption="Enhanced Image", use_column_width=True)
else:
st.warning("Enhanced image is not available. Try adjusting the sliders or clicking 'Auto Enhance'.")
else: # Comparison view
if st.session_state.enhanced_image is not None:
image_comparison(
img1=Image.fromarray(st.session_state.original_image.astype(np.uint8)),
img2=Image.fromarray(st.session_state.enhanced_image.astype(np.uint8)),
label1="Original",
label2="Enhanced",
width=850, # You might want to adjust this value
starting_position=50,
show_labels=True,
make_responsive=True,
)
else:
st.warning("Enhanced image is not available for comparison. Try adjusting the sliders or clicking 'Auto Enhance'.")
# Add custom CSS to make the image comparison component responsive
st.markdown("""
<style>
.stImageComparison {
width: 100% !important;
}
.stImageComparison > figure > div {
width: 100% !important;
}
</style>
""", unsafe_allow_html=True)
|