Spaces:
Sleeping
Sleeping
File size: 16,801 Bytes
65a0216 af79ab5 65a0216 af79ab5 9779d6a 65a0216 af79ab5 65a0216 af79ab5 65a0216 af79ab5 65a0216 af79ab5 65a0216 af79ab5 9779d6a 65a0216 af79ab5 65a0216 af79ab5 81c3483 9779d6a 81c3483 65a0216 b872988 81c3483 65a0216 b872988 81c3483 b872988 9779d6a 81c3483 9779d6a c601b51 81c3483 9779d6a 81c3483 9779d6a 81c3483 65a0216 81c3483 65a0216 81c3483 65a0216 af79ab5 65a0216 9779d6a 65a0216 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import streamlit as st
import torch
from PIL import Image
import numpy as np
from streamlit_image_comparison import image_comparison
# from src.envs.new_edit_photo import PhotoEditor
from src.sac.sac_inference import InferenceAgent
import yaml
import os
from src.envs.photo_env import PhotoEnhancementEnvTest
from tensordict import TensorDict
import torchvision.transforms.v2.functional as F
from streamlit import cache_resource
import pandas as pd
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource
from bokeh.palettes import Spectral3
from src.envs.edit_photo_opt import PhotoEditor
import io
import cv2
# Set page config to wide mode
st.set_page_config(layout="wide")
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# DEVICE = torch.device("cpu")
MODEL_PATH = os.path.join("experiments",'ResNet_10_sliders__224_128_aug__2024-07-23_21-23-35')
SLIDERS = ['temp','tint','exposure', 'contrast','highlights','shadows', 'whites', 'blacks','vibrance','saturation']
SLIDERS_ORD = ['contrast','exposure','temp','tint','whites','blacks','highlights','shadows','vibrance','saturation']
class Config(object):
def __init__(self,dictionary):
self.__dict__.update(dictionary)
@cache_resource
def load_preprocessor_agent(preprocessor_agent_path,device):
with open(os.path.join(preprocessor_agent_path,"configs/sac_config.yaml")) as f:
sac_config_dict = yaml.load(f, Loader=yaml.FullLoader)
with open(os.path.join(preprocessor_agent_path,"configs/env_config.yaml")) as f:
env_config_dict = yaml.load(f, Loader=yaml.FullLoader)
with open(os.path.join("src/configs/inference_config.yaml")) as f:
inf_config_dict = yaml.load(f, Loader=yaml.FullLoader)
inference_config = Config(inf_config_dict)
sac_config = Config(sac_config_dict)
env_config = Config(env_config_dict)
inference_env = PhotoEnhancementEnvTest(
batch_size=env_config.train_batch_size,
imsize=env_config.imsize,
training_mode=None,
done_threshold=env_config.threshold_psnr,
edit_sliders=env_config.sliders_to_use,
features_size=env_config.features_size,
discretize=env_config.discretize,
discretize_step=env_config.discretize_step,
use_txt_features=env_config.use_txt_features if hasattr(env_config,'use_txt_features') else False,
augment_data=False,
pre_encoding_device=device,
pre_load_images=False,
logger=None
)
inference_config.device = device
preprocessor_agent = InferenceAgent(inference_env, inference_config)
preprocessor_agent.device = device
preprocessor_agent.load_backbone(os.path.join(preprocessor_agent_path,'models','backbone.pth'))
preprocessor_agent.load_actor_weights(os.path.join(preprocessor_agent_path,'models','actor_head.pth'))
preprocessor_agent.load_critics_weights(os.path.join(preprocessor_agent_path,'models','qf1_head.pth'),
os.path.join(preprocessor_agent_path,'models','qf2_head.pth'))
return preprocessor_agent
enhancer_agent = load_preprocessor_agent(MODEL_PATH,DEVICE)
photo_editor = PhotoEditor(SLIDERS)
def enhance_image(image:np.array, params:dict):
input_image = image.unsqueeze(0).to(DEVICE)
parameters = [params[param_name]/100.0 for param_name in SLIDERS_ORD]
parameters = torch.tensor(parameters).unsqueeze(0).to(DEVICE)
if st.session_state.photopro_image is None:
enhanced_image,photopro_image = photo_editor(input_image,parameters,use_photopro_image=False)
st.session_state.photopro_image = photopro_image
else:
enhanced_image = photo_editor(st.session_state.photopro_image,parameters,use_photopro_image=True)
enhanced_image = enhanced_image.squeeze(0).cpu().detach().numpy()
enhanced_image = np.clip(enhanced_image, 0, 1)
enhanced_image = (enhanced_image*255).astype(np.uint8)
return enhanced_image
def auto_enhance(image,deterministic=True):
input_image = image.unsqueeze(0).to(DEVICE)
input_image = input_image.permute(0,3,1,2)
IMAGE_SIZE = enhancer_agent.env.imsize
input_image = F.resize(input_image, (IMAGE_SIZE, IMAGE_SIZE), interpolation=F.InterpolationMode.BICUBIC)
batch_observation = TensorDict(
{
"batch_images":input_image,
},
batch_size = [input_image.shape[0]],
)
parameters = enhancer_agent.act(batch_observation,deterministic=deterministic,n_samples=0)
parameters = parameters.squeeze(0)*100.0
parameters = torch.round(parameters)
output_parameters = []
index = 0
for slider in SLIDERS_ORD:
if slider in enhancer_agent.env.edit_sliders:
output_parameters.append(parameters[index].item())
index += 1
else:
output_parameters.append(0)
return output_parameters
def slider_callback():
st.session_state.apply_button_enabled = True
def apply_button_callback():
for name in SLIDERS:
st.session_state.params[name] = st.session_state[f"slider_{name}"]
image_tensor = torch.from_numpy(st.session_state.original_image).float() / 255.0
st.session_state.enhanced_image = enhance_image(image_tensor, st.session_state.params)
st.session_state.apply_button_enabled = False
def auto_random_enhance_callback():
image_tensor = torch.from_numpy(st.session_state.original_image).float() / 255.0
auto_params = auto_enhance(image_tensor,deterministic=False)
for i, name in enumerate(SLIDERS_ORD):
st.session_state[f"slider_{name}"] = int(auto_params[i])
st.session_state.params[name] = int(auto_params[i])
st.session_state.enhanced_image = enhance_image(image_tensor, st.session_state.params)
def auto_enhance_callback():
image_tensor = torch.from_numpy(st.session_state.original_image).float() / 255.0
auto_params = auto_enhance(image_tensor)
for i, name in enumerate(SLIDERS_ORD):
st.session_state[f"slider_{name}"] = int(auto_params[i])
st.session_state.params[name] = int(auto_params[i])
st.session_state.enhanced_image = enhance_image(image_tensor, st.session_state.params)
def reset_sliders():
for name in SLIDERS:
st.session_state[f"slider_{name}"] = 0
st.session_state.params[name] = 0
# st.session_state.enhanced_image = enhance_image(image_tensor, st.session_state.params)
st.session_state.enhanced_image = st.session_state.original_image
def reset_on_upload():
st.session_state.original_image = None
st.session_state.photopro_image = None
st.session_state.file_extension = None
st.session_state.mime_type = None
reset_sliders()
def create_smooth_histogram(image):
# Compute histograms for each channel
bins = np.linspace(0, 255, 256)
hist_r, _ = np.histogram(image[..., 0], bins=bins)
hist_g, _ = np.histogram(image[..., 1], bins=bins)
hist_b, _ = np.histogram(image[..., 2], bins=bins)
# Normalize the histograms
def normalize_histogram(hist):
hist_central = hist[1:-1]
hist_max = np.max(hist_central)
hist_min = np.min(hist_central)
hist_normalized = (hist_central - hist_min) / (hist_max - hist_min)
hist[0] = min(hist[0] / hist_max, 1)
hist[-1] = min(hist[-1] / hist_max, 1)
return np.concatenate(([hist[0]], hist_normalized, [hist[-1]]))
hist_r_norm = normalize_histogram(hist_r)
hist_g_norm = normalize_histogram(hist_g)
hist_b_norm = normalize_histogram(hist_b)
# Create Bokeh figure with transparent background
p = figure(width=300, height=150, toolbar_location=None,
x_range=(0, 255), y_range=(0, 1.1),
background_fill_color=None,
border_fill_color=None,
outline_line_color=None)
# Remove all axes, labels, and grids
p.axis.visible = False
p.xgrid.grid_line_color = None
p.ygrid.grid_line_color = None
# Create ColumnDataSource for each channel
source_r = ColumnDataSource(data=dict(left=bins[:-1], right=bins[1:], top=hist_r_norm))
source_g = ColumnDataSource(data=dict(left=bins[:-1], right=bins[1:], top=hist_g_norm))
source_b = ColumnDataSource(data=dict(left=bins[:-1], right=bins[1:], top=hist_b_norm))
# Plot the histograms
p.quad(bottom=0, top='top', left='left', right='right', source=source_r,
fill_color="red", fill_alpha=0.9, line_color=None)
p.quad(bottom=0, top='top', left='left', right='right', source=source_g,
fill_color="green", fill_alpha=0.9, line_color=None)
p.quad(bottom=0, top='top', left='left', right='right', source=source_b,
fill_color="blue", fill_alpha=0.9, line_color=None)
# Remove padding
p.min_border_left = 0
p.min_border_right = 0
p.min_border_top = 0
p.min_border_bottom = 0
return p
# In your Streamlit app
def plot_histogram_streamlit(image):
histogram = create_smooth_histogram(image)
st.sidebar.bokeh_chart(histogram, use_container_width=True)
# Initialize session state
if 'enhanced_image' not in st.session_state:
st.session_state.enhanced_image = None
if 'original_image' not in st.session_state:
st.session_state.original_image = None
if 'photopro_image' not in st.session_state:
st.session_state.photopro_image = None
if 'params' not in st.session_state:
st.session_state.params = {name: 0 for name in SLIDERS}
if "apply_button_enabled" not in st.session_state:
st.session_state.apply_button_enabled = False
if "uploaded_file" not in st.session_state:
st.session_state.uploaded_file = None
if 'file_extension' not in st.session_state:
st.session_state.file_extension = None
for name in SLIDERS:
if f"slider_{name}" not in st.session_state:
st.session_state[f"slider_{name}"] = 0
for name in SLIDERS:
if f"slider_{name}" not in st.session_state:
st.session_state[f"slider_{name}"] = 0
# Set up the Streamlit app
# File uploader in the main area
_, center_col,_ = st.columns([1, 2, 1])
if st.session_state.original_image is None:
with center_col:
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png", "tif", "tiff"], on_change=reset_on_upload)
# Show welcome content only if no file is uploaded
if uploaded_file is None:
st.title("Welcome to the AI Photo Enhancement App")
st.write("This application uses Reinforcement Learning to enhance your photos with ease and flexibility. Below, you'll find a short tutorial video on how to use the app.")
st.write("You can find the project repository here: [AI Photo Enhancer GitHub](https://github.com/zakaria-narjis/ai-photo-enhancer).")
# st.info("Please note that this app is currently limited to 8-bit images. I'm working on extending it to handle 16-bit images.", icon="ℹ️")
st.video("demo.mp4", muted=True)
st.subheader("How to Use the App:")
st.markdown("""
1. **<span style='color: #FF6347;'>Upload</span> your image** to get started.
2. Proceed to the **<span style='color: #FF6347;'>editing</span> phase**, where you can:
- View the color histograms and adjust sliders for various tonal values.
- Use the **<span style='color: #FF6347;'>Auto Enhance</span>** button to let the agent automatically enhance your image.
- Use the **<span style='color: #FF6347;'>Auto Random Enhance</span>** button to receive different suggested editing parameters each time.
- **<span style='color: #FF6347;'>Manually refine</span>** your image by adjusting slider values and clicking the **<span style='color: #FF6347;'>Apply Edits</span>** button at the bottom of the sidebar.
3. **<span style='color: #FF6347;'>Download</span>** your enhanced image once you're satisfied with the results.
""", unsafe_allow_html=True)
st.write("Enjoy! :smile:")
elif st.session_state.original_image is None: # Process the uploaded file
# Get and store the file extension
file_ext = uploaded_file.name.split('.')[-1].lower()
st.session_state.file_extension = file_ext
# Convert tif/tiff to appropriate mime type
if file_ext in ['tif', 'tiff']:
st.session_state.mime_type = 'image/tiff'
elif file_ext == 'jpg':
st.session_state.file_extension = 'jpeg'
st.session_state.mime_type = 'image/jpeg'
else:
st.session_state.mime_type = f'image/{file_ext}'
st.session_state.original_image = np.array(Image.open(uploaded_file).convert('RGB'), dtype=np.uint16)
if st.session_state.original_image is not None:
# Load the original image
# st.session_state.original_image = np.array(Image.open(st.session_state.original_image).convert('RGB'),dtype=np.uint16)
# Enhance the image initially
if st.session_state.enhanced_image is None:
st.session_state.enhanced_image = st.session_state.original_image
# Sidebar for controls
st.sidebar.title("Controls")
# Display histogram
st.sidebar.subheader("Colors Histogram")
plot_histogram_streamlit(st.session_state.enhanced_image)
# Select box to choose which image to display
display_option = st.sidebar.selectbox(
"Select view mode",
("Comparison", "Enhanced")
)
# Create two columns for the buttons
col1, col2,col3 = st.sidebar.columns(3)
# Button for auto-enhancement
with col1:
st.button("Auto Enhance", on_click=auto_enhance_callback, key="auto_enhance_button",use_container_width=True)
with col2:
st.button("Auto Random Enhance", on_click=auto_random_enhance_callback, key="auto_random_enhance_button",use_container_width=True)
# Button for resetting sliders
with col3:
st.button("Reset", on_click=reset_sliders, key="reset_button",use_container_width=True)
st.sidebar.subheader("Adjustments")
slider_names = SLIDERS
for name in slider_names:
if f"slider_{name}" not in st.session_state:
st.session_state[f"slider_{name}"] = 0
st.sidebar.slider(
name.capitalize(),
min_value=-100,
max_value=100,
value=st.session_state[f"slider_{name}"],
key=f"slider_{name}",
on_change=slider_callback
)
st.sidebar.button("Apply manual edit", on_click=apply_button_callback, key="apply_button",use_container_width=True,disabled=not st.session_state.apply_button_enabled)
# Create a single column to maximize width
left_spacer, content_column, right_spacer = st.columns([1, 3, 1])
with content_column:
if display_option == "Enhanced":
if st.session_state.enhanced_image is not None:
st.image(st.session_state.enhanced_image.astype(np.uint8), caption="Enhanced Image", use_column_width=True)
else:
st.warning("Enhanced image is not available. Try adjusting the sliders or clicking 'Auto Enhance'.")
else: # Comparison view
if st.session_state.enhanced_image is not None:
image_comparison(
img1=Image.fromarray(st.session_state.original_image.astype(np.uint8)),
img2=Image.fromarray(st.session_state.enhanced_image.astype(np.uint8)),
label1="Original",
label2="Enhanced",
width=850, # You might want to adjust this value
starting_position=50,
show_labels=True,
make_responsive=True,
)
else:
st.warning("Enhanced image is not available for comparison. Try adjusting the sliders or clicking 'Auto Enhance'.")
with io.BytesIO() as img_bytes:
enhanced_img = Image.fromarray(st.session_state.enhanced_image.astype(np.uint8))
enhanced_img.save(img_bytes, format=f"{st.session_state.file_extension}")
st.download_button(
label="Download Enhanced Image",
data=img_bytes.getvalue(),
file_name=f"enhanced.{st.session_state.file_extension}".lower(),
mime=st.session_state.mime_type,
use_container_width=True
)
# Add custom CSS to make the image comparison component responsive
st.markdown("""
<style>
.stImageComparison {
width: 100% !important;
}
.stImageComparison > figure > div {
width: 100% !important;
}
</style>
""", unsafe_allow_html=True)
|