File size: 11,420 Bytes
998f96a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from envs.env_dataloader import create_dataloaders
import torchvision.transforms as transforms
from torchvision.transforms import v2
from torchmetrics.image import StructuralSimilarityIndexMeasure
from envs.new_edit_photo import PhotoEditor
from sac.sac_inference import InferenceAgent
import yaml
from envs.photo_env import PhotoEnhancementEnvTest
import numpy as np
import argparse
import logging
import os
from pathlib import Path
from tqdm import tqdm
import random
import matplotlib.pyplot as plt
import torch
class Config(object):
    def __init__(self,dictionary):
        self.__dict__.update(dictionary)

def load_preprocessor_agent(preprocessor_agent_path,device):
    current_dir = Path(__file__).parent.absolute()
    with open(os.path.join(preprocessor_agent_path,"configs/sac_config.yaml")) as f:
        sac_config_dict =yaml.load(f, Loader=yaml.FullLoader)
    with open(os.path.join(preprocessor_agent_path,"configs/env_config.yaml")) as f:
        env_config_dict =yaml.load(f, Loader=yaml.FullLoader)
    with open(os.path.join(current_dir,"../configs/inference_config.yaml")) as f:
        inf_config_dict =yaml.load(f, Loader=yaml.FullLoader)    
    inference_config = Config(inf_config_dict)
    sac_config = Config(sac_config_dict)
    env_config = Config(env_config_dict)              
    inference_env = PhotoEnhancementEnvTest(
                        batch_size=env_config.train_batch_size,
                        imsize=env_config.imsize,
                        training_mode=False,
                        done_threshold=env_config.threshold_psnr,
                        edit_sliders=env_config.sliders_to_use,
                        features_size=env_config.features_size,
                        discretize=env_config.discretize,
                        discretize_step= env_config.discretize_step,
                        use_txt_features=env_config.use_txt_features if hasattr(env_config,'use_txt_features') else False,
                        augment_data=False,
                        pre_encoding_device=device,
                        pre_load_images=False,   
                        logger=None)# useless just to get the action space size for the Networks and whether to use txt features or not
    preprocessor_photo_editor = PhotoEditor(env_config.sliders_to_use)
    inference_config.device = device
    preprocessor_agent = InferenceAgent(inference_env, inference_config)
    preprocessor_agent.device = device
    os.path.join(preprocessor_agent_path,'models','backbone.pth')
    preprocessor_agent.load_backbone(os.path.join(preprocessor_agent_path,'models','backbone.pth'))
    preprocessor_agent.load_actor_weights(os.path.join(preprocessor_agent_path,'models','actor_head.pth'))
    preprocessor_agent.load_critics_weights(os.path.join(preprocessor_agent_path,'models','qf1_head.pth'),
                                os.path.join(preprocessor_agent_path,'models','qf2_head.pth'))
    return preprocessor_agent,preprocessor_photo_editor

def str2bool(v):
    if isinstance(v, bool):
        return v
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')
    
def main():
    current_dir = Path(__file__).parent.absolute()
    parser = argparse.ArgumentParser()
    parser.add_argument('experiment_path', help='folder containing the experiment models')
    parser.add_argument('--deterministic', type=str2bool, nargs='?', const=True, default=False)
    # parser.add_argument('--pre_load_images', type=str2bool, nargs='?', const=True, default=True)
    parser.add_argument('--logger_level', type=int, default=logging.INFO)
    parser.add_argument('--device', nargs='?',type=str, default='cuda:0')
    parser.add_argument('--plt_samples', nargs='?',type=int, default=3)
    args = parser.parse_args()
    logger = logging.getLogger("test")
    args.device = torch.device(args.device) if torch.cuda.is_available() else torch.device('cpu')
    # Configure logging to console
    console_handler = logging.StreamHandler()
    console_handler.setLevel(args.logger_level)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    console_handler.setFormatter(formatter)
    logger.addHandler(console_handler)
    logger.setLevel(args.logger_level)

    with open(os.path.join(current_dir,"configs/inference_config.yaml")) as f:
        inf_config_dict =yaml.load(f, Loader=yaml.FullLoader)        
    with open(os.path.join(args.experiment_path,"configs/sac_config.yaml")) as f:
        sac_config_dict =yaml.load(f, Loader=yaml.FullLoader)
    with open(os.path.join(args.experiment_path,"configs/env_config.yaml")) as f:
        env_config_dict =yaml.load(f, Loader=yaml.FullLoader)

    inference_config = Config(inf_config_dict)
    sac_config = Config(sac_config_dict)
    env_config = Config(env_config_dict)
    if hasattr(env_config,'preprocessor_agent_path')==False:
        env_config.preprocessor_agent_path = None
    SEED = sac_config.seed

    random.seed(SEED)
    np.random.seed(SEED)
    torch.manual_seed(SEED)
    torch.backends.cudnn.deterministic = sac_config.torch_deterministic
    torch.autograd.set_detect_anomaly(True)
    
    inference_config.device = args.device
    photo_editor = PhotoEditor(env_config.sliders_to_use)

    inference_env = PhotoEnhancementEnvTest(
                        batch_size=env_config.train_batch_size,
                        imsize=env_config.imsize,
                        training_mode=False,
                        done_threshold=env_config.threshold_psnr,
                        edit_sliders=env_config.sliders_to_use,
                        features_size=env_config.features_size,
                        discretize=env_config.discretize,
                        discretize_step= env_config.discretize_step,
                        use_txt_features=env_config.use_txt_features if hasattr(env_config,'use_txt_features') else False,
                        augment_data=env_config.augment_data if hasattr(env_config,'augment_data') else False,
                        pre_encoding_device= args.device,
                        pre_load_images = False,
                        preprocessor_agent_path=None,  
                        logger=None
    )# useless just to get the action space size for the Networks and whether to use txt features or not
    inf_agent = InferenceAgent(inference_env, inference_config)
    os.path.join(args.experiment_path,'models','backbone.pth')
    inf_agent.load_backbone(os.path.join(args.experiment_path,'models','backbone.pth'))
    inf_agent.load_actor_weights(os.path.join(args.experiment_path,'models','actor_head.pth'))
    inf_agent.load_critics_weights(os.path.join(args.experiment_path,'models','qf1_head.pth'),
                                   os.path.join(args.experiment_path,'models','qf2_head.pth'))
    
    if env_config.preprocessor_agent_path is not None:
        preprocessor_agent,preprocessor_photo_editor = load_preprocessor_agent(env_config.preprocessor_agent_path,args.device)
    ssim_metric = StructuralSimilarityIndexMeasure().to(args.device)
    
    test_512 = create_dataloaders(batch_size=1,image_size=env_config.imsize,use_txt_features=False,
                       train=False,augment_data=False,shuffle=False,resize=False,pre_encoding_device=args.device,pre_load_images=False)
    test_resized = create_dataloaders(batch_size=500,image_size=env_config.imsize,use_txt_features=env_config.use_txt_features if hasattr(env_config,'use_txt_features') else False,
                       train=False,augment_data=False,shuffle=False,resize=True,pre_encoding_device=args.device,
                       pre_load_images=True)

    PSNRS = []
    SSIM = []

    logger.info(f'Testing ...')
    logger.info(f'Using device {args.device}')
    # batch_64_images = next(iter(test_64))[0]/255.0
    inference_env.dataloader = test_resized
    inference_env.iter_dataloader = iter(test_resized)
    inference_env.batch_size = 500 
    batch_images = inference_env.reset()
    logger.info(f'Computing optimal enhancement sliders values, DETERMINISTIC:{args.deterministic}')
    if env_config.preprocessor_agent_path is not None:
        pre_parameters = preprocessor_agent.act(batch_images,deterministic=args.deterministic)
        preprocessed_images = preprocessor_photo_editor(batch_images.permute(0,2,3,1), pre_parameters)
        preprocessed_images = preprocessed_images.permute(0,3,1,2)
    else:
        preprocessed_images = batch_images
    parameters = inf_agent.act(preprocessed_images,deterministic=args.deterministic)

    logger.info(f'Done')
    parameter_counter = 0
    logger.info(f'Enhancing images and computing metrics')

    plot_data =[]
    random_indices = random.sample(range(len(test_512)), args.plt_samples)
    for i,t in tqdm(test_512, position=0, leave=True):
        source = i/255.0
        target = t/255.0
        if env_config.preprocessor_agent_path is not None:
            enhanced_image = source.permute(0,2,3,1)
            enhanced_image = preprocessor_photo_editor(enhanced_image.to(args.device),
                                                       pre_parameters[parameter_counter].unsqueeze(0).to(args.device)) 
        else:
            enhanced_image = source.permute(0,2,3,1)
        enhanced_image = photo_editor(enhanced_image.to(args.device),parameters[parameter_counter].unsqueeze(0).to(args.device))
        enhanced_image = enhanced_image.permute(0,3,1,2) # B,C,H,W
        psnr = inference_env.compute_rewards(enhanced_image.to(args.device),target.to(args.device)).item()+50
        ssim = ssim_metric(enhanced_image.to(args.device),target.to(args.device)).item()
        PSNRS.append(psnr)
        SSIM.append(ssim)
        if  parameter_counter in random_indices:
            enhanced_image = enhanced_image.permute(0,2,3,1) # B,H,W,C
            plot_data.append((source.cpu(),enhanced_image.cpu(),target.cpu(),psnr,ssim))
        parameter_counter+=1

    mean_PSNRS = round(np.mean(PSNRS),2)
    mean_SSIM = round(np.mean(SSIM),3)
    logger.info(f'Mean PSNR on MIT 5K Dataset {mean_PSNRS}')
    logger.info(f'Mean SSIM on MIT 5K Dataset {mean_SSIM}')
    

    # Plotting
    
    

    fig, axes = plt.subplots(3, args.plt_samples, figsize=(15, args.plt_samples*5)) 
    # plt.subplots_adjust(hspace=0.5)
    logger.info(f'Plotting samples')
    for index in range(args.plt_samples):
        plot_data[index][0]
        axes[0][index].imshow(plot_data[index][0][0].permute(1,2,0))
        # axes[0][0].set_title(('source_img'))
        axes[0][index].axis('off')
        axes[1][index].imshow(plot_data[index][1][0])
        # axes[1][index].set_title('Ours')
        axes[1][index].axis('off')
        axes[1][index].text(0.5, -0.04, f'PSNR:{round(plot_data[index][3],2)}, SSIM:{round(plot_data[index][4],2)}', 
                            size=10, ha='center', 
                                    transform=axes[1][index].transAxes) 
        axes[2][index].imshow(plot_data[index][2][0].permute(1,2,0))
        axes[2][index].axis('off')
    plt.tight_layout()
    logger.info(f'Saving plot in {os.path.join(args.experiment_path,"samples_plot.svg")}')
    fig.savefig(os.path.join(args.experiment_path,"samples_plot.svg"), format='svg')
    

if __name__ == "__main__":
    main()