Spaces:
Sleeping
Sleeping
Update advanced_analysis.py
Browse files- advanced_analysis.py +53 -22
advanced_analysis.py
CHANGED
|
@@ -11,11 +11,13 @@ from sklearn.feature_extraction import text
|
|
| 11 |
import gensim
|
| 12 |
from gensim import corpora
|
| 13 |
from gensim.models import LdaModel
|
| 14 |
-
|
|
|
|
| 15 |
from transformers import pipeline
|
| 16 |
import torch
|
| 17 |
-
|
| 18 |
-
from
|
|
|
|
| 19 |
import spacy
|
| 20 |
from collections import defaultdict
|
| 21 |
import matplotlib.pyplot as plt
|
|
@@ -24,6 +26,7 @@ import plotly.graph_objects as go
|
|
| 24 |
from wordcloud import WordCloud
|
| 25 |
import io
|
| 26 |
import base64
|
|
|
|
| 27 |
|
| 28 |
# Download NLTK data
|
| 29 |
try:
|
|
@@ -40,8 +43,9 @@ class AdvancedTextAnalysis:
|
|
| 40 |
def __init__(self):
|
| 41 |
self.sentiment_analyzer = None
|
| 42 |
self.summarizer = None
|
| 43 |
-
|
| 44 |
-
self.
|
|
|
|
| 45 |
self.stop_words_id = None
|
| 46 |
|
| 47 |
# Load stopwords Indonesia
|
|
@@ -138,32 +142,34 @@ class AdvancedTextAnalysis:
|
|
| 138 |
|
| 139 |
def extract_keywords_yake(self, texts, num_keywords=10):
|
| 140 |
"""
|
| 141 |
-
Extract keywords menggunakan YAKE
|
| 142 |
"""
|
| 143 |
try:
|
| 144 |
-
keyword_extractor = KeywordExtractor(
|
| 145 |
-
lan="id",
|
| 146 |
-
n=2, # n-gram size
|
| 147 |
-
dedupLim=0.8,
|
| 148 |
-
dedupFunc='seqm',
|
| 149 |
-
windowsSize=1,
|
| 150 |
-
top=num_keywords
|
| 151 |
-
)
|
| 152 |
-
|
| 153 |
all_keywords = []
|
| 154 |
for i, text in enumerate(texts):
|
| 155 |
if not text or len(text.strip()) < 50:
|
| 156 |
continue
|
| 157 |
|
| 158 |
processed_text = self.preprocess_text(text)
|
| 159 |
-
keywords = keyword_extractor.extract_keywords(processed_text)
|
| 160 |
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
all_keywords.append({
|
| 163 |
'doc_id': i,
|
| 164 |
'keyword': keyword,
|
| 165 |
'score': round(score, 4),
|
| 166 |
-
'type': '
|
| 167 |
})
|
| 168 |
|
| 169 |
return all_keywords
|
|
@@ -210,7 +216,7 @@ class AdvancedTextAnalysis:
|
|
| 210 |
|
| 211 |
def text_summarization(self, texts, ratio=0.3):
|
| 212 |
"""
|
| 213 |
-
Text summarization menggunakan extractive methods
|
| 214 |
"""
|
| 215 |
try:
|
| 216 |
summaries = []
|
|
@@ -227,8 +233,10 @@ class AdvancedTextAnalysis:
|
|
| 227 |
continue
|
| 228 |
|
| 229 |
try:
|
| 230 |
-
#
|
| 231 |
-
|
|
|
|
|
|
|
| 232 |
|
| 233 |
summaries.append({
|
| 234 |
'doc_id': i,
|
|
@@ -516,4 +524,27 @@ def save_advanced_analysis_results(results):
|
|
| 516 |
print("β
Hasil analisis lanjutan disimpan ke folder 'analisis'")
|
| 517 |
|
| 518 |
except Exception as e:
|
| 519 |
-
print(f"β Error menyimpan hasil analisis lanjutan: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
import gensim
|
| 12 |
from gensim import corpora
|
| 13 |
from gensim.models import LdaModel
|
| 14 |
+
# Hapus impor yang bermasalah
|
| 15 |
+
# from gensim.summarization import summarize as gensim_summarize
|
| 16 |
from transformers import pipeline
|
| 17 |
import torch
|
| 18 |
+
# Hapus impor yang membutuhkan OMP
|
| 19 |
+
# from keybert import KeyBERT
|
| 20 |
+
# from yake import KeywordExtractor
|
| 21 |
import spacy
|
| 22 |
from collections import defaultdict
|
| 23 |
import matplotlib.pyplot as plt
|
|
|
|
| 26 |
from wordcloud import WordCloud
|
| 27 |
import io
|
| 28 |
import base64
|
| 29 |
+
import os
|
| 30 |
|
| 31 |
# Download NLTK data
|
| 32 |
try:
|
|
|
|
| 43 |
def __init__(self):
|
| 44 |
self.sentiment_analyzer = None
|
| 45 |
self.summarizer = None
|
| 46 |
+
# Hapus model yang bermasalah
|
| 47 |
+
# self.keybert_model = None
|
| 48 |
+
# self.nlp = None
|
| 49 |
self.stop_words_id = None
|
| 50 |
|
| 51 |
# Load stopwords Indonesia
|
|
|
|
| 142 |
|
| 143 |
def extract_keywords_yake(self, texts, num_keywords=10):
|
| 144 |
"""
|
| 145 |
+
Extract keywords menggunakan YAKE - Fallback version
|
| 146 |
"""
|
| 147 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
all_keywords = []
|
| 149 |
for i, text in enumerate(texts):
|
| 150 |
if not text or len(text.strip()) < 50:
|
| 151 |
continue
|
| 152 |
|
| 153 |
processed_text = self.preprocess_text(text)
|
|
|
|
| 154 |
|
| 155 |
+
# Simple keyword extraction based on TF-IDF as fallback
|
| 156 |
+
words = processed_text.split()
|
| 157 |
+
word_freq = Counter(words)
|
| 158 |
+
|
| 159 |
+
# Remove stopwords and short words
|
| 160 |
+
filtered_words = {word: freq for word, freq in word_freq.items()
|
| 161 |
+
if word not in self.stop_words_id and len(word) > 2}
|
| 162 |
+
|
| 163 |
+
# Get top keywords
|
| 164 |
+
top_keywords = sorted(filtered_words.items(), key=lambda x: x[1], reverse=True)[:num_keywords]
|
| 165 |
+
|
| 166 |
+
for keyword, freq in top_keywords:
|
| 167 |
+
score = freq / len(words) # Simple frequency-based score
|
| 168 |
all_keywords.append({
|
| 169 |
'doc_id': i,
|
| 170 |
'keyword': keyword,
|
| 171 |
'score': round(score, 4),
|
| 172 |
+
'type': 'FREQUENCY'
|
| 173 |
})
|
| 174 |
|
| 175 |
return all_keywords
|
|
|
|
| 216 |
|
| 217 |
def text_summarization(self, texts, ratio=0.3):
|
| 218 |
"""
|
| 219 |
+
Text summarization menggunakan extractive methods - Simplified version
|
| 220 |
"""
|
| 221 |
try:
|
| 222 |
summaries = []
|
|
|
|
| 233 |
continue
|
| 234 |
|
| 235 |
try:
|
| 236 |
+
# Simple extractive summarization: take first few sentences
|
| 237 |
+
sentences = sent_tokenize(text)
|
| 238 |
+
num_sentences = max(1, int(len(sentences) * ratio))
|
| 239 |
+
summary = ' '.join(sentences[:num_sentences])
|
| 240 |
|
| 241 |
summaries.append({
|
| 242 |
'doc_id': i,
|
|
|
|
| 524 |
print("β
Hasil analisis lanjutan disimpan ke folder 'analisis'")
|
| 525 |
|
| 526 |
except Exception as e:
|
| 527 |
+
print(f"β Error menyimpan hasil analisis lanjutan: {e}")
|
| 528 |
+
|
| 529 |
+
# Tambahkan fungsi dummy untuk menghindari error di main app
|
| 530 |
+
def perform_advanced_analysis_wrapper():
|
| 531 |
+
"""Wrapper function untuk analisis lanjutan"""
|
| 532 |
+
try:
|
| 533 |
+
# Load metadata
|
| 534 |
+
metadata_df = pd.read_csv('scrapper_result/article_metadata.csv')
|
| 535 |
+
|
| 536 |
+
if metadata_df.empty:
|
| 537 |
+
return "β Tidak ada data untuk dianalisis", None, None, None, None, None, None, None
|
| 538 |
+
|
| 539 |
+
# Perform analysis
|
| 540 |
+
result_msg, results, topic_viz, keyword_viz, concept_viz = perform_advanced_analysis(metadata_df)
|
| 541 |
+
|
| 542 |
+
# Prepare dataframes
|
| 543 |
+
topic_df = pd.DataFrame(results['topics']['topics']) if results and 'topics' in results else pd.DataFrame()
|
| 544 |
+
keyword_df = pd.DataFrame(results['keywords']) if results and 'keywords' in results else pd.DataFrame()
|
| 545 |
+
summary_df = pd.DataFrame(results['summaries']) if results and 'summaries' in results else pd.DataFrame()
|
| 546 |
+
concept_df = pd.DataFrame(results['concepts']) if results and 'concepts' in results else pd.DataFrame()
|
| 547 |
+
|
| 548 |
+
return result_msg, topic_viz, keyword_viz, concept_viz, topic_df, keyword_df, summary_df, concept_df
|
| 549 |
+
except Exception as e:
|
| 550 |
+
return f"β Error: {str(e)}", None, None, None, pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
|