File size: 1,576 Bytes
685f307
 
85b90a3
 
685f307
85b90a3
685f307
85b90a3
 
685f307
 
85b90a3
 
 
 
 
 
685f307
 
85b90a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685f307
85b90a3
685f307
85b90a3
 
 
 
685f307
 
 
85b90a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import json
from textblob import TextBlob
from fastapi import FastAPI, HTTPException
import uvicorn

app = FastAPI()

def analyze_sentiment(text: str) -> dict:
    """Core sentiment analysis logic"""
    blob = TextBlob(text)
    sentiment = blob.sentiment
    return {
        "polarity": round(sentiment.polarity, 2),
        "subjectivity": round(sentiment.subjectivity, 2),
        "assessment": "positive" if sentiment.polarity > 0 
                     else "negative" if sentiment.polarity < 0 
                     else "neutral"
    }

@app.post("/mcp/sentiment")
async def handle_mcp_request(data: dict):
    """
    MCP-compatible endpoint
    Expected input: {"parameters": {"text": "your text here"}}
    """
    try:
        text = data.get("parameters", {}).get("text", "")
        if not text:
            raise HTTPException(status_code=400, detail="Missing 'text' parameter")
        
        result = analyze_sentiment(text)
        return {
            "jsonrpc": "2.0",
            "result": result,
            "id": "sentiment-response"
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

from fastapi.staticfiles import StaticFiles
import gradio as gr

# Mount Gradio interface at /ui
app.mount("/ui", gr.routes.App.create_app(demo))

# Create Gradio interface (same as original)
demo = gr.Interface(
    fn=lambda text: analyze_sentiment(text),
    inputs=gr.Textbox(),
    outputs=gr.JSON(),
    title="Sentiment Analysis UI"
)

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)