Antcar
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import tensorflow as tf
|
| 3 |
import numpy as np
|
| 4 |
-
import
|
| 5 |
|
| 6 |
-
# 1.
|
| 7 |
-
#
|
| 8 |
-
|
|
|
|
| 9 |
|
| 10 |
# Helper to map day names to integers
|
| 11 |
DAY_MAP = {
|
|
@@ -15,13 +16,11 @@ DAY_MAP = {
|
|
| 15 |
|
| 16 |
def predict_eta(distance_meters, num_stops, hour, day_name, route_id):
|
| 17 |
try:
|
| 18 |
-
# 1. Prepare Inputs
|
| 19 |
-
# We must match the exact shape and types used in training
|
| 20 |
-
|
| 21 |
# Handle empty route
|
| 22 |
if not route_id or route_id.strip() == "":
|
| 23 |
route_id = "UNKNOWN"
|
| 24 |
|
|
|
|
| 25 |
inputs = {
|
| 26 |
'distance': np.array([[float(distance_meters)]]),
|
| 27 |
'num_stops': np.array([[float(num_stops)]]),
|
|
@@ -30,11 +29,10 @@ def predict_eta(distance_meters, num_stops, hour, day_name, route_id):
|
|
| 30 |
'route_id': tf.constant([[str(route_id)]], dtype=tf.string)
|
| 31 |
}
|
| 32 |
|
| 33 |
-
#
|
| 34 |
prediction = model.predict(inputs, verbose=0)
|
| 35 |
seconds = float(prediction[0][0])
|
| 36 |
|
| 37 |
-
# 3. Format Output
|
| 38 |
minutes = int(seconds // 60)
|
| 39 |
rem_seconds = int(seconds % 60)
|
| 40 |
|
|
@@ -43,7 +41,7 @@ def predict_eta(distance_meters, num_stops, hour, day_name, route_id):
|
|
| 43 |
except Exception as e:
|
| 44 |
return f"Error: {str(e)}"
|
| 45 |
|
| 46 |
-
#
|
| 47 |
iface = gr.Interface(
|
| 48 |
fn=predict_eta,
|
| 49 |
inputs=[
|
|
@@ -51,22 +49,12 @@ iface = gr.Interface(
|
|
| 51 |
gr.Number(label="Number of Stops", value=10),
|
| 52 |
gr.Slider(minimum=0, maximum=23, step=1, label="Hour of Day (0-23)", value=9),
|
| 53 |
gr.Dropdown(choices=list(DAY_MAP.keys()), label="Day of Week", value="Monday"),
|
| 54 |
-
gr.Textbox(label="Route ID
|
| 55 |
],
|
| 56 |
outputs="text",
|
| 57 |
-
title="HK-TransitFlow-Net
|
| 58 |
-
description=""
|
| 59 |
-
**Hong Kong Bus ETA Predictor**
|
| 60 |
-
|
| 61 |
-
This model uses Deep Learning to predict bus travel time based on distance, stops, and time context.
|
| 62 |
-
|
| 63 |
-
* **Distance:** Physical distance of the path in meters.
|
| 64 |
-
* **Route ID:** Internal ID (e.g., `968+1+...`). If unknown, leave as UNKNOWN.
|
| 65 |
-
* **Note:** Trained on KMB & CTB data.
|
| 66 |
-
""",
|
| 67 |
theme="soft"
|
| 68 |
)
|
| 69 |
|
| 70 |
-
|
| 71 |
-
if __name__ == "__main__":
|
| 72 |
-
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import tensorflow as tf
|
| 3 |
import numpy as np
|
| 4 |
+
from huggingface_hub import from_pretrained_keras
|
| 5 |
|
| 6 |
+
# 1. Download the Model from your Repository
|
| 7 |
+
# This connects this Space to your uploaded model
|
| 8 |
+
print("Downloading model...")
|
| 9 |
+
model = from_pretrained_keras("WheelsTransit/HK-TransitFlow-Net")
|
| 10 |
|
| 11 |
# Helper to map day names to integers
|
| 12 |
DAY_MAP = {
|
|
|
|
| 16 |
|
| 17 |
def predict_eta(distance_meters, num_stops, hour, day_name, route_id):
|
| 18 |
try:
|
|
|
|
|
|
|
|
|
|
| 19 |
# Handle empty route
|
| 20 |
if not route_id or route_id.strip() == "":
|
| 21 |
route_id = "UNKNOWN"
|
| 22 |
|
| 23 |
+
# Prepare inputs exactly as the model expects
|
| 24 |
inputs = {
|
| 25 |
'distance': np.array([[float(distance_meters)]]),
|
| 26 |
'num_stops': np.array([[float(num_stops)]]),
|
|
|
|
| 29 |
'route_id': tf.constant([[str(route_id)]], dtype=tf.string)
|
| 30 |
}
|
| 31 |
|
| 32 |
+
# Run Prediction
|
| 33 |
prediction = model.predict(inputs, verbose=0)
|
| 34 |
seconds = float(prediction[0][0])
|
| 35 |
|
|
|
|
| 36 |
minutes = int(seconds // 60)
|
| 37 |
rem_seconds = int(seconds % 60)
|
| 38 |
|
|
|
|
| 41 |
except Exception as e:
|
| 42 |
return f"Error: {str(e)}"
|
| 43 |
|
| 44 |
+
# Build the Interface
|
| 45 |
iface = gr.Interface(
|
| 46 |
fn=predict_eta,
|
| 47 |
inputs=[
|
|
|
|
| 49 |
gr.Number(label="Number of Stops", value=10),
|
| 50 |
gr.Slider(minimum=0, maximum=23, step=1, label="Hour of Day (0-23)", value=9),
|
| 51 |
gr.Dropdown(choices=list(DAY_MAP.keys()), label="Day of Week", value="Monday"),
|
| 52 |
+
gr.Textbox(label="Route ID", placeholder="968+1+...", value="UNKNOWN")
|
| 53 |
],
|
| 54 |
outputs="text",
|
| 55 |
+
title="HK-TransitFlow-Net Demo",
|
| 56 |
+
description="Live inference for HK Bus ETA prediction.",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
theme="soft"
|
| 58 |
)
|
| 59 |
|
| 60 |
+
iface.launch()
|
|
|
|
|
|