Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,28 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import tensorflow as tf
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
|
| 6 |
-
# 1.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
print("Downloading model...")
|
| 8 |
model_path = hf_hub_download(repo_id="WheelsTransit/HK-TransitFlow-Net", filename="hk_transit_flow_net.keras")
|
| 9 |
|
|
@@ -43,7 +62,7 @@ def predict_eta(distance_meters, num_stops, hour, day_name, route_id):
|
|
| 43 |
except Exception as e:
|
| 44 |
return f"Error: {str(e)}"
|
| 45 |
|
| 46 |
-
#
|
| 47 |
with gr.Blocks() as demo:
|
| 48 |
gr.Markdown("# HK-TransitFlow-Net Demo π")
|
| 49 |
gr.Markdown("Live inference for HK Bus ETA prediction.")
|
|
@@ -55,7 +74,15 @@ with gr.Blocks() as demo:
|
|
| 55 |
stops_input = gr.Number(label="Number of Stops", value=10)
|
| 56 |
hour_input = gr.Slider(minimum=0, maximum=23, step=1, label="Hour of Day (0-23)", value=9)
|
| 57 |
day_input = gr.Dropdown(choices=list(DAY_MAP.keys()), label="Day of Week", value="Monday")
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
predict_btn = gr.Button("Predict ETA", variant="primary")
|
| 61 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import tensorflow as tf
|
| 3 |
import numpy as np
|
| 4 |
+
import requests
|
| 5 |
from huggingface_hub import hf_hub_download
|
| 6 |
|
| 7 |
+
# --- 1. Fetch Route Options for Dropdown ---
|
| 8 |
+
print("Fetching route list for dropdown...")
|
| 9 |
+
try:
|
| 10 |
+
resp = requests.get("https://hkbus.github.io/hk-bus-crawling/routeFareList.min.json")
|
| 11 |
+
if resp.status_code == 200:
|
| 12 |
+
data = resp.json()
|
| 13 |
+
# Get all keys (e.g. "968+1+Yuen Long+Tin Hau")
|
| 14 |
+
# We sort them so they are easy to find
|
| 15 |
+
all_routes = sorted(list(data['routeList'].keys()))
|
| 16 |
+
else:
|
| 17 |
+
all_routes = []
|
| 18 |
+
except Exception as e:
|
| 19 |
+
print(f"Error fetching routes: {e}")
|
| 20 |
+
all_routes = []
|
| 21 |
+
|
| 22 |
+
# Add "UNKNOWN" as the first/default option
|
| 23 |
+
route_choices = ["UNKNOWN"] + all_routes
|
| 24 |
+
|
| 25 |
+
# --- 2. Download and Load Model ---
|
| 26 |
print("Downloading model...")
|
| 27 |
model_path = hf_hub_download(repo_id="WheelsTransit/HK-TransitFlow-Net", filename="hk_transit_flow_net.keras")
|
| 28 |
|
|
|
|
| 62 |
except Exception as e:
|
| 63 |
return f"Error: {str(e)}"
|
| 64 |
|
| 65 |
+
# --- 3. Build the UI ---
|
| 66 |
with gr.Blocks() as demo:
|
| 67 |
gr.Markdown("# HK-TransitFlow-Net Demo π")
|
| 68 |
gr.Markdown("Live inference for HK Bus ETA prediction.")
|
|
|
|
| 74 |
stops_input = gr.Number(label="Number of Stops", value=10)
|
| 75 |
hour_input = gr.Slider(minimum=0, maximum=23, step=1, label="Hour of Day (0-23)", value=9)
|
| 76 |
day_input = gr.Dropdown(choices=list(DAY_MAP.keys()), label="Day of Week", value="Monday")
|
| 77 |
+
|
| 78 |
+
# UPDATED: Dropdown with search capabilities
|
| 79 |
+
route_input = gr.Dropdown(
|
| 80 |
+
choices=route_choices,
|
| 81 |
+
label="Route ID",
|
| 82 |
+
value="UNKNOWN",
|
| 83 |
+
filterable=True, # Allows typing to search
|
| 84 |
+
interactive=True
|
| 85 |
+
)
|
| 86 |
|
| 87 |
predict_btn = gr.Button("Predict ETA", variant="primary")
|
| 88 |
|