Upload 2 files
Browse files- app.py +364 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import h2o
|
| 3 |
+
from h2o.automl import H2OAutoML
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import os
|
| 6 |
+
import numpy as np
|
| 7 |
+
from sklearn.metrics import mean_squared_error
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import shutil
|
| 10 |
+
import zipfile
|
| 11 |
+
import io
|
| 12 |
+
import tempfile
|
| 13 |
+
import zipfile
|
| 14 |
+
|
| 15 |
+
# Set page config at the very beginning
|
| 16 |
+
st.set_page_config(page_title="AquaLearn", layout="wide")
|
| 17 |
+
|
| 18 |
+
# Initialize the H2O server
|
| 19 |
+
h2o.init()
|
| 20 |
+
def rename_columns_alphabetically(df):
|
| 21 |
+
new_columns = [chr(65 + i) for i in range(len(df.columns))]
|
| 22 |
+
return df.rename(columns=dict(zip(df.columns, new_columns)))
|
| 23 |
+
|
| 24 |
+
def sanitize_column_name(name):
|
| 25 |
+
# Replace non-alphanumeric characters with underscores
|
| 26 |
+
sanitized = ''.join(c if c.isalnum() else '_' for c in name)
|
| 27 |
+
# Ensure the name starts with a letter or underscore
|
| 28 |
+
if not sanitized[0].isalpha() and sanitized[0] != '_':
|
| 29 |
+
sanitized = 'f_' + sanitized
|
| 30 |
+
return sanitized
|
| 31 |
+
|
| 32 |
+
# Create a directory for saving models
|
| 33 |
+
if not os.path.exists("saved_models"):
|
| 34 |
+
os.makedirs("saved_models")
|
| 35 |
+
|
| 36 |
+
def load_data():
|
| 37 |
+
st.title("Aqua Learn")
|
| 38 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
| 39 |
+
if uploaded_file is not None:
|
| 40 |
+
train = pd.read_csv(uploaded_file)
|
| 41 |
+
st.write(train.head())
|
| 42 |
+
return h2o.H2OFrame(train)
|
| 43 |
+
return None
|
| 44 |
+
|
| 45 |
+
def select_problem_type():
|
| 46 |
+
return st.selectbox("Select Problem Type:", ['Classification', 'Regression'])
|
| 47 |
+
|
| 48 |
+
def select_target_column(train_h2o):
|
| 49 |
+
return st.selectbox("Select Target Column:", train_h2o.columns)
|
| 50 |
+
|
| 51 |
+
def prepare_features(train_h2o, y, problem_type):
|
| 52 |
+
x = train_h2o.columns
|
| 53 |
+
x.remove(y)
|
| 54 |
+
if problem_type == 'Classification':
|
| 55 |
+
train_h2o[y] = train_h2o[y].asfactor()
|
| 56 |
+
|
| 57 |
+
# Rename columns
|
| 58 |
+
new_columns = [chr(65 + i) for i in range(len(train_h2o.columns))]
|
| 59 |
+
train_h2o.columns = new_columns
|
| 60 |
+
y = new_columns[-1] # Assume the target is the last column
|
| 61 |
+
x = new_columns[:-1]
|
| 62 |
+
|
| 63 |
+
return x, y, train_h2o
|
| 64 |
+
|
| 65 |
+
def select_algorithms():
|
| 66 |
+
algorithm_options = ['DeepLearning', 'GLM', 'GBM', 'DRF', 'XGBoost']
|
| 67 |
+
return st.multiselect("Select Algorithms:", algorithm_options)
|
| 68 |
+
|
| 69 |
+
def set_automl_parameters():
|
| 70 |
+
max_models = st.number_input("Max Models:", value=20, min_value=1)
|
| 71 |
+
max_runtime = st.number_input("Max Runtime (seconds):", value=600, min_value=1)
|
| 72 |
+
return max_models, max_runtime
|
| 73 |
+
|
| 74 |
+
def run_automl(x, y, train, problem_type, selected_algos, max_models, max_runtime):
|
| 75 |
+
aml = H2OAutoML(max_models=max_models,
|
| 76 |
+
seed=1,
|
| 77 |
+
max_runtime_secs=max_runtime,
|
| 78 |
+
sort_metric="AUC" if problem_type == 'Classification' else "RMSE",
|
| 79 |
+
include_algos=selected_algos)
|
| 80 |
+
aml.train(x=x, y=y, training_frame=train)
|
| 81 |
+
return aml
|
| 82 |
+
|
| 83 |
+
def display_results(aml, test):
|
| 84 |
+
st.subheader("AutoML Leaderboard")
|
| 85 |
+
st.write(aml.leaderboard.as_data_frame())
|
| 86 |
+
|
| 87 |
+
st.subheader("Best Model Performance")
|
| 88 |
+
best_model = aml.leader
|
| 89 |
+
perf = best_model.model_performance(test)
|
| 90 |
+
st.write(perf)
|
| 91 |
+
|
| 92 |
+
def save_and_evaluate_models(aml, test, y, problem_type):
|
| 93 |
+
if st.button("Save Models and Calculate Performance"):
|
| 94 |
+
model_performances = []
|
| 95 |
+
for model_id in aml.leaderboard['model_id'].as_data_frame().values:
|
| 96 |
+
model = h2o.get_model(model_id[0])
|
| 97 |
+
|
| 98 |
+
# model_path = os.path.join("saved_models", f"{model_id[0]}")
|
| 99 |
+
# h2o.save_model(model=model, path=model_path, force=True)
|
| 100 |
+
# st.session_state.saved_models.append((model_id[0], model_path))
|
| 101 |
+
|
| 102 |
+
preds = model.predict(test)
|
| 103 |
+
actual = test[y].as_data_frame().values.flatten()
|
| 104 |
+
predicted = preds.as_data_frame()['predict'].values.flatten()
|
| 105 |
+
|
| 106 |
+
if problem_type == 'Classification':
|
| 107 |
+
performance = (actual == predicted).mean()
|
| 108 |
+
metric_name = 'accuracy'
|
| 109 |
+
else:
|
| 110 |
+
performance = np.sqrt(mean_squared_error(actual, predicted))
|
| 111 |
+
metric_name = 'rmse'
|
| 112 |
+
|
| 113 |
+
model_performances.append({'model_id': model_id[0], metric_name: performance})
|
| 114 |
+
|
| 115 |
+
performance_df = pd.DataFrame(model_performances)
|
| 116 |
+
st.write(performance_df)
|
| 117 |
+
|
| 118 |
+
# Create and display the bar plot
|
| 119 |
+
st.subheader("Model Performance Visualization")
|
| 120 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 121 |
+
performance_df.sort_values(by=metric_name, ascending=False, inplace=True)
|
| 122 |
+
ax.barh(performance_df['model_id'], performance_df[metric_name], color='skyblue')
|
| 123 |
+
ax.set_xlabel(metric_name.capitalize())
|
| 124 |
+
ax.set_ylabel('Model ID')
|
| 125 |
+
ax.set_title(f'Model {metric_name.capitalize()} from H2O AutoML')
|
| 126 |
+
ax.grid(axis='x')
|
| 127 |
+
st.pyplot(fig)
|
| 128 |
+
|
| 129 |
+
def download_model():
|
| 130 |
+
st.subheader("Download Model")
|
| 131 |
+
if 'saved_models' in st.session_state and st.session_state.saved_models:
|
| 132 |
+
model_to_download = st.selectbox("Select Model to Download:",
|
| 133 |
+
[model[0] for model in st.session_state.saved_models])
|
| 134 |
+
if st.button("Download Selected Model"):
|
| 135 |
+
model_path = next(model[1] for model in st.session_state.saved_models if model[0] == model_to_download)
|
| 136 |
+
|
| 137 |
+
if os.path.isdir(model_path):
|
| 138 |
+
# If it's a directory, create a zip file
|
| 139 |
+
zip_buffer = io.BytesIO()
|
| 140 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
| 141 |
+
for root, _, files in os.walk(model_path):
|
| 142 |
+
for file in files:
|
| 143 |
+
zip_file.write(os.path.join(root, file),
|
| 144 |
+
os.path.relpath(os.path.join(root, file), model_path))
|
| 145 |
+
|
| 146 |
+
zip_buffer.seek(0)
|
| 147 |
+
st.download_button(
|
| 148 |
+
label="Click to Download",
|
| 149 |
+
data=zip_buffer,
|
| 150 |
+
file_name=f"{model_to_download}.zip",
|
| 151 |
+
mime="application/zip"
|
| 152 |
+
)
|
| 153 |
+
else:
|
| 154 |
+
# If it's already a file, offer it for download
|
| 155 |
+
with open(model_path, "rb") as file:
|
| 156 |
+
st.download_button(
|
| 157 |
+
label="Click to Download",
|
| 158 |
+
data=file,
|
| 159 |
+
file_name=f"{model_to_download}.zip",
|
| 160 |
+
mime="application/zip"
|
| 161 |
+
)
|
| 162 |
+
else:
|
| 163 |
+
st.write("No models available for download. Please train and save models first.")
|
| 164 |
+
|
| 165 |
+
def further_training(aml, x, y, train, problem_type):
|
| 166 |
+
st.subheader("Further Training")
|
| 167 |
+
leaderboard_df = aml.leaderboard.as_data_frame()
|
| 168 |
+
model_to_train = st.selectbox("Select Model for Training:", leaderboard_df['model_id'].tolist())
|
| 169 |
+
training_time = st.number_input("Training Time (seconds):", value=60, min_value=1)
|
| 170 |
+
|
| 171 |
+
if st.button("Train Model"):
|
| 172 |
+
model = h2o.get_model(model_to_train)
|
| 173 |
+
|
| 174 |
+
with st.spinner(f"Training model: {model_to_train} for {training_time} seconds..."):
|
| 175 |
+
if isinstance(model, h2o.estimators.stackedensemble.H2OStackedEnsembleEstimator):
|
| 176 |
+
aml = H2OAutoML(max_runtime_secs=training_time, seed=1, sort_metric="AUC" if problem_type == 'Classification' else "RMSE")
|
| 177 |
+
aml.train(x=x, y=y, training_frame=train)
|
| 178 |
+
model = aml.leader
|
| 179 |
+
else:
|
| 180 |
+
model.train(x=x, y=y, training_frame=train, max_runtime_secs=training_time)
|
| 181 |
+
|
| 182 |
+
perf = model.model_performance(train)
|
| 183 |
+
st.write("Model performance after training:")
|
| 184 |
+
st.write(perf)
|
| 185 |
+
|
| 186 |
+
# Create a temporary directory to save the model
|
| 187 |
+
temp_dir = os.path.join("saved_models", "temp")
|
| 188 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 189 |
+
model_path = os.path.join(temp_dir, f"{model.model_id}")
|
| 190 |
+
h2o.save_model(model=model, path=model_path, force=True)
|
| 191 |
+
|
| 192 |
+
# Create a zip file of the model
|
| 193 |
+
zip_buffer = io.BytesIO()
|
| 194 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
| 195 |
+
for root, _, files in os.walk(model_path):
|
| 196 |
+
for file in files:
|
| 197 |
+
zip_file.write(os.path.join(root, file),
|
| 198 |
+
os.path.relpath(os.path.join(root, file), model_path))
|
| 199 |
+
|
| 200 |
+
zip_buffer.seek(0)
|
| 201 |
+
st.download_button(
|
| 202 |
+
label="Download Retrained Model",
|
| 203 |
+
data=zip_buffer,
|
| 204 |
+
file_name=f"{model.model_id}.zip",
|
| 205 |
+
mime="application/zip"
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
# Clean up the temporary directory
|
| 209 |
+
shutil.rmtree(temp_dir)
|
| 210 |
+
|
| 211 |
+
st.success(f"Retrained model ready for download: {model.model_id}")
|
| 212 |
+
|
| 213 |
+
def make_prediction():
|
| 214 |
+
st.subheader("Make Prediction")
|
| 215 |
+
|
| 216 |
+
uploaded_zip = st.file_uploader("Upload a zip file containing the model", type="zip")
|
| 217 |
+
if uploaded_zip is not None:
|
| 218 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 219 |
+
zip_path = os.path.join(tmpdirname, "model.zip")
|
| 220 |
+
with open(zip_path, "wb") as f:
|
| 221 |
+
f.write(uploaded_zip.getbuffer())
|
| 222 |
+
|
| 223 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
| 224 |
+
zip_ref.extractall(tmpdirname)
|
| 225 |
+
|
| 226 |
+
extracted_files = os.listdir(tmpdirname)
|
| 227 |
+
if len(extracted_files) == 0:
|
| 228 |
+
st.error("The uploaded zip file is empty.")
|
| 229 |
+
return
|
| 230 |
+
|
| 231 |
+
model_file = next((f for f in extracted_files if f != "model.zip"), None)
|
| 232 |
+
if model_file is None:
|
| 233 |
+
st.error("No model file found in the uploaded zip.")
|
| 234 |
+
return
|
| 235 |
+
|
| 236 |
+
model_path = os.path.join(tmpdirname, model_file)
|
| 237 |
+
|
| 238 |
+
try:
|
| 239 |
+
model_for_prediction = h2o.load_model(model_path)
|
| 240 |
+
except Exception as e:
|
| 241 |
+
st.error(f"Error loading the model: {str(e)}")
|
| 242 |
+
st.error("Please ensure you're uploading a valid H2O model file.")
|
| 243 |
+
return
|
| 244 |
+
|
| 245 |
+
# Ask user to input feature names
|
| 246 |
+
feature_names_input = st.text_input("Enter feature names, separated by commas:")
|
| 247 |
+
original_feature_names = [name.strip() for name in feature_names_input.split(',') if name.strip()]
|
| 248 |
+
|
| 249 |
+
if not original_feature_names:
|
| 250 |
+
st.error("Please enter at least one feature name.")
|
| 251 |
+
return
|
| 252 |
+
|
| 253 |
+
# Create a mapping from original names to A, B, C, etc.
|
| 254 |
+
feature_mapping = {name: chr(65 + i) for i, name in enumerate(original_feature_names)}
|
| 255 |
+
reverse_mapping = {v: k for k, v in feature_mapping.items()}
|
| 256 |
+
|
| 257 |
+
prediction_type = st.radio("Choose prediction type:", ["Upload CSV", "Single Entry"])
|
| 258 |
+
|
| 259 |
+
if prediction_type == "Upload CSV":
|
| 260 |
+
uploaded_csv = st.file_uploader("Upload a CSV file for prediction", type="csv")
|
| 261 |
+
if uploaded_csv is not None:
|
| 262 |
+
prediction_data = pd.read_csv(uploaded_csv)
|
| 263 |
+
|
| 264 |
+
# Rename columns to A, B, C, etc.
|
| 265 |
+
prediction_data = prediction_data.rename(columns=feature_mapping)
|
| 266 |
+
|
| 267 |
+
prediction_h2o = h2o.H2OFrame(prediction_data)
|
| 268 |
+
try:
|
| 269 |
+
predictions = model_for_prediction.predict(prediction_h2o)
|
| 270 |
+
predictions_df = predictions.as_data_frame()
|
| 271 |
+
|
| 272 |
+
# Combine original data with predictions
|
| 273 |
+
result_df = pd.concat([prediction_data, predictions_df], axis=1)
|
| 274 |
+
|
| 275 |
+
# Rename columns back to original names for display
|
| 276 |
+
result_df = result_df.rename(columns=reverse_mapping)
|
| 277 |
+
|
| 278 |
+
st.write("Predictions (showing first 10 rows):")
|
| 279 |
+
st.write(result_df.head(10))
|
| 280 |
+
|
| 281 |
+
# Option to download the full results
|
| 282 |
+
csv = result_df.to_csv(index=False)
|
| 283 |
+
st.download_button(
|
| 284 |
+
label="Download full results as CSV",
|
| 285 |
+
data=csv,
|
| 286 |
+
file_name="predictions_results.csv",
|
| 287 |
+
mime="text/csv"
|
| 288 |
+
)
|
| 289 |
+
except Exception as e:
|
| 290 |
+
st.error(f"Error making predictions: {str(e)}")
|
| 291 |
+
st.error("Please ensure your CSV file matches the model's expected input format.")
|
| 292 |
+
|
| 293 |
+
else: # Single Entry
|
| 294 |
+
sample_input = {}
|
| 295 |
+
for original_name, coded_name in feature_mapping.items():
|
| 296 |
+
value = st.text_input(f"Enter {original_name} ({coded_name}):")
|
| 297 |
+
try:
|
| 298 |
+
sample_input[coded_name] = [float(value)]
|
| 299 |
+
except ValueError:
|
| 300 |
+
sample_input[coded_name] = [value]
|
| 301 |
+
|
| 302 |
+
if st.button("Predict"):
|
| 303 |
+
sample_h2o = h2o.H2OFrame(sample_input)
|
| 304 |
+
try:
|
| 305 |
+
predictions = model_for_prediction.predict(sample_h2o)
|
| 306 |
+
prediction_value = predictions['predict'][0,0]
|
| 307 |
+
st.write(f"Predicted value: {prediction_value}")
|
| 308 |
+
except Exception as e:
|
| 309 |
+
st.error(f"Error making prediction: {str(e)}")
|
| 310 |
+
st.error("Please ensure you've entered valid input values.")
|
| 311 |
+
else:
|
| 312 |
+
st.write("Please upload a zip file containing the model to make predictions.")
|
| 313 |
+
def main():
|
| 314 |
+
train_h2o = load_data()
|
| 315 |
+
if train_h2o is not None:
|
| 316 |
+
problem_type = select_problem_type()
|
| 317 |
+
target_column = select_target_column(train_h2o)
|
| 318 |
+
|
| 319 |
+
if st.button("Set Target and Continue"):
|
| 320 |
+
x, target_column, train_h2o = prepare_features(train_h2o, target_column, problem_type)
|
| 321 |
+
st.session_state.features_prepared = True
|
| 322 |
+
st.session_state.x = x
|
| 323 |
+
st.session_state.target_column = target_column
|
| 324 |
+
st.session_state.train_h2o = train_h2o
|
| 325 |
+
st.session_state.problem_type = problem_type
|
| 326 |
+
|
| 327 |
+
if 'features_prepared' in st.session_state and st.session_state.features_prepared:
|
| 328 |
+
st.write(f"Target Column: {st.session_state.target_column}")
|
| 329 |
+
st.write(f"Feature Columns: {st.session_state.x}")
|
| 330 |
+
|
| 331 |
+
train, test = st.session_state.train_h2o.split_frame(ratios=[0.8])
|
| 332 |
+
|
| 333 |
+
selected_algos = select_algorithms()
|
| 334 |
+
max_models, max_runtime = set_automl_parameters()
|
| 335 |
+
|
| 336 |
+
if st.button("Start AutoML"):
|
| 337 |
+
if not selected_algos:
|
| 338 |
+
st.error("Please select at least one algorithm.")
|
| 339 |
+
else:
|
| 340 |
+
with st.spinner("Running AutoML..."):
|
| 341 |
+
aml = run_automl(st.session_state.x, st.session_state.target_column, train,
|
| 342 |
+
st.session_state.problem_type, selected_algos, max_models, max_runtime)
|
| 343 |
+
|
| 344 |
+
st.success("AutoML training completed.")
|
| 345 |
+
st.session_state.aml = aml
|
| 346 |
+
st.session_state.test = test
|
| 347 |
+
|
| 348 |
+
if 'aml' in st.session_state:
|
| 349 |
+
display_results(st.session_state.aml, st.session_state.test)
|
| 350 |
+
save_and_evaluate_models(st.session_state.aml, st.session_state.test, st.session_state.target_column, st.session_state.problem_type)
|
| 351 |
+
download_model()
|
| 352 |
+
further_training(st.session_state.aml, st.session_state.x, st.session_state.target_column, train, st.session_state.problem_type)
|
| 353 |
+
|
| 354 |
+
make_prediction() # Call make_prediction without arguments
|
| 355 |
+
|
| 356 |
+
if __name__ == "__main__":
|
| 357 |
+
if 'features_prepared' not in st.session_state:
|
| 358 |
+
st.session_state.features_prepared = False
|
| 359 |
+
if 'saved_models' not in st.session_state:
|
| 360 |
+
st.session_state.saved_models = []
|
| 361 |
+
main()
|
| 362 |
+
|
| 363 |
+
# Clean up saved models when the script ends
|
| 364 |
+
shutil.rmtree("saved_models", ignore_errors=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.39.0
|
| 2 |
+
h2o==3.46.0.5
|
| 3 |
+
pandas==2.2.2
|
| 4 |
+
matplotlib==3.7.1
|
| 5 |
+
numpy==1.26.4
|