⸻ APJ Threat Intelligence System Architecture & Operational Design 1. Purpose A multilingual, culturally aware threat-intelligence platform capable of interpreting Mandarin/Cantonese cybercrime chatter and transforming it into structured intelligence for APJ-focused defensive operations. ⸻ 2. Major Components 2.1 Ingest Layer • Marketplace scrapers (read-only) • Telegram/Discord crawlers • Domain & WHOIS monitors • File upload entry via Gradio 2.2 Language Layer • Dialect detection (Mandarin vs Cantonese) • Idiom interpreter • Slang lexicon with auto-expansion 2.3 Intelligence Layer • Threat classification model (Transformers) • Vendor graph builder • Trend engine & anomaly detector • Reputational scoring 2.4 Operator Interface • Mobile-first Gradio chat console • Mode switcher: • Threat Intel • Translation • Marketplace Watch • Analyst Tools ⸻ 3. Data Structures Message Object { "raw_text": "...", "language": "zh-yue", "slang": ["飛數", "黑料"], "intent": "selling_stolen_data", "risk_score": 4 } Vendor Node { "handle": "darkcat99", "languages": ["zh-CN"], "reputation": 0.74, "products": ["phishing-kit", "RAT"], "last_seen": "2025-01-04" } ⸻ 4. Pipeline Flow Source → Ingest → Language Engine → Threat Classifier → Vendor Graph → Analysis → UI ⸻ 5. Requirements • Python 3.10+ • gradio • transformers • datasets • pydantic ⸻