Spaces:
Sleeping
Sleeping
| from typing import List, Optional | |
| try: | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
| import torch | |
| except ImportError: | |
| AutoModelForSequenceClassification = None | |
| AutoTokenizer = None | |
| torch = None | |
| class ThreatModel: | |
| """ | |
| Transformer wrapper. If transformers is not installed, | |
| falls back to dummy mode and returns empty probabilities. | |
| """ | |
| def __init__(self, model_path: str, device: Optional[str] = None): | |
| self.available = AutoModelForSequenceClassification is not None and torch is not None | |
| self.model = None | |
| self.tokenizer = None | |
| self.device = "cpu" | |
| if not self.available: | |
| return | |
| self.device = device or ("cuda" if torch.cuda.is_available() else "cpu") | |
| self.tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| self.model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
| self.model.to(self.device) | |
| def predict_proba(self, text: str) -> List[float]: | |
| if not self.available or self.model is None or self.tokenizer is None: | |
| return [] | |
| inputs = self.tokenizer( | |
| text, | |
| return_tensors="pt", | |
| truncation=True, | |
| padding=True | |
| ).to(self.device) | |
| with torch.no_grad(): | |
| outputs = self.model(**inputs) | |
| logits = outputs.logits | |
| probs = torch.softmax(logits, dim=-1).cpu().tolist()[0] | |
| return probs |