ThtratLandscapeChat / model_inference.py
S-Dreamer's picture
Create model_inference.py
75c4517 verified
raw
history blame
973 Bytes
# model_inference.py
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
class ThreatModel:
"""
Wraps a transformer classifier for threat categorization.
"""
def __init__(self, model_path="bert-base-chinese", device=None):
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModelForSequenceClassification.from_pretrained(model_path)
self.model.to(self.device)
def predict(self, text):
inputs = self.tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probs = torch.softmax(logits, dim=-1).cpu().tolist()[0]
return probs # list of probabilities per class