#no oom? import gradio as gr import numpy as np import random # import spaces #[uncomment to use ZeroGPU] from diffusers import DiffusionPipeline import torch targets = {"pussy", "boobs", "breasts", "vagina", "penis", "sex", "oral", "anal", "butt", "ass"} device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "John6666/spicy-realism-nsfw-mix-v30-sdxl" # Replace to the model you would like to use if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) print(pipe) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 from PIL import Image def safe_infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_steps): clean = ''.join(c for c in prompt.lower() if c.isalnum() or c.isspace()) if any(word in clean for word in targets): print("Found at least one banned word!") blank = Image.new("RGB", (width, height), (0, 0, 0)) return blank, seed return infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_steps) # @spaces.GPU #[uncomment to use ZeroGPU] def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", value = "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn, (breasts:3), (nipple:3), (nipples:3), (boobs:3), (butt:3), (ass:3), (butthole:3), (sex:3), (fetish:3), (pussy:3), (vagina:3), (porn:3), (hentai:3), (explicit:3)", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=64, maximum=MAX_IMAGE_SIZE, step=32, value=384, # Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=64, maximum=MAX_IMAGE_SIZE, step=32, value=384, # Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=3.6, # Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=80, step=1, value=15, # Replace with defaults that work for your model ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=safe_infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()