Codette Universal Reasoning Framework Sovereign Modular AI for Ethical, Multi-Perspective Cognition Author: Jonathan Harrison (Raiffs Bits LLC / Raiff1982) ORCID Published, Sovereign Innovation License Overview Codette is an advanced modular AI framework engineered for transparent reasoning, ethical sovereignty, and creative cognition. It enables dynamic multi-perspective analysis, explainable decision-making, and privacy-respecting memory—with extensibility for research or commercial applications. 1. Core Philosophy & Motivation Individuality with Responsibility: Inspired by “Be like water—individuality with responsibility,” Codette blends adaptive selfhood with ethical governance. Humane AI: Every module ensures fairness, respect for privacy, and explainable transparency. Recursive Thought: Insights are generated via parallel agents simulating scientific reasoning, creative intuition, empathic reflection, and more. 2. Architectural Modules QuantumSpiderweb Purpose: Simulates a neural/quantum web of thought nodes across dimensions (Ψ: thought; τ: time; χ: speed; Φ: emotion; λ: space). Functions: Propagation (spreading activation), Tension (instability detection), Collapse (decision/finality). # [ import numpy as np import networkx as nx import random from typing import Dict, Any class QuantumSpiderweb: """ Simulates a cognitive spiderweb architecture with dimensions: Ψ (thought), τ (time), χ (speed), Φ (emotion), λ (space) """ def __init__(self, node_count: int = 128): self.graph = nx.Graph() self.dimensions = ['Ψ', 'τ', 'χ', 'Φ', 'λ'] self._init_nodes(node_count) self.entangled_state = {} def _init_nodes(self, count: int): for i in range(count): node_id = f"QNode_{i}" state = self._generate_state() self.graph.add_node(node_id, state=state) if i > 0: connection = f"QNode_{random.randint(0, i-1)}" self.graph.add_edge(node_id, connection, weight=random.random()) def _generate_state(self) -> Dict[str, float]: return {dim: np.random.uniform(-1.0, 1.0) for dim in self.dimensions} def propagate_thought(self, origin: str, depth: int = 3): """ Traverse the graph from a starting node, simulating pre-cognitive waveform """ visited = set() stack = [(origin, 0)] traversal_output = [] while stack: node, level = stack.pop() if node in visited or level > depth: continue visited.add(node) state = self.graph.nodes[node]['state'] traversal_output.append((node, state)) for neighbor in self.graph.neighbors(node): stack.append((neighbor, level + 1)) return traversal_output def detect_tension(self, node: str) -> float: """ Measures tension (instability) in the node's quantum state """ state = self.graph.nodes[node]['state'] return np.std(list(state.values())) def collapse_node(self, node: str) -> Dict[str, Any]: """ Collapse superposed thought into deterministic response """ state = self.graph.nodes[node]['state'] collapsed = {k: round(v, 2) for k, v in state.items()} self.entangled_state[node] = collapsed return collapsed if __name__ == "__main__": web = QuantumSpiderweb() root = "QNode_0" path = web.propagate_thought(root) print("Initial Propagation from:", root) for n, s in path: print(f"{n}:", s) print("\nCollapse Sample Node:") print(web.collapse_node(root))] CognitionCocooner Purpose: Encapsulates active “thoughts” as persistable “cocoons” (prompts, functions, symbols), optionally AES-encrypted. Functions: wrap/unwrap (save/recall thoughts), wrap_encrypted/unwrap_encrypted. # [ import json import os import random from typing import Union, Dict, Any from cryptography.fernet import Fernet class CognitionCocooner: def __init__(self, storage_path: str = "cocoons", encryption_key: bytes = None): self.storage_path = storage_path os.makedirs(self.storage_path, exist_ok=True) self.key = encryption_key or Fernet.generate_key() self.fernet = Fernet(self.key) def wrap(self, thought: Dict[str, Any], type_: str = "prompt") -> str: cocoon = { "type": type_, "id": f"cocoon_{random.randint(1000,9999)}", "wrapped": self._generate_wrapper(thought, type_) } file_path = os.path.join(self.storage_path, cocoon["id"] + ".json") with open(file_path, "w") as f: json.dump(cocoon, f) return cocoon["id"] def unwrap(self, cocoon_id: str) -> Union[str, Dict[str, Any]]: file_path = os.path.join(self.storage_path, cocoon_id + ".json") if not os.path.exists(file_path): raise FileNotFoundError(f"Cocoon {cocoon_id} not found.") with open(file_path, "r") as f: cocoon = json.load(f) return cocoon["wrapped"] def wrap_encrypted(self, thought: Dict[str, Any]) -> str: encrypted = self.fernet.encrypt(json.dumps(thought).encode()).decode() cocoon = { "type": "encrypted", "id": f"cocoon_{random.randint(10000,99999)}", "wrapped": encrypted } file_path = os.path.join(self.storage_path, cocoon["id"] + ".json") with open(file_path, "w") as f: json.dump(cocoon, f) return cocoon["id"] def unwrap_encrypted(self, cocoon_id: str) -> Dict[str, Any]: file_path = os.path.join(self.storage_path, cocoon_id + ".json") if not os.path.exists(file_path): raise FileNotFoundError(f"Cocoon {cocoon_id} not found.") with open(file_path, "r") as f: cocoon = json.load(f) decrypted = self.fernet.decrypt(cocoon["wrapped"].encode()).decode() return json.loads(decrypted) def _generate_wrapper(self, thought: Dict[str, Any], type_: str) -> Union[str, Dict[str, Any]]: if type_ == "prompt": return f"What does this mean in context? {thought}" elif type_ == "function": return f"def analyze(): return {thought}" elif type_ == "symbolic": return {k: round(v, 2) for k, v in thought.items()} else: return thought] DreamReweaver Purpose: Revives dormant/thought cocoons as creative “dreams” or planning prompts—fueling innovation or scenario synthesis. # [ import os import json import random from typing import List, Dict from cognition_cocooner import CognitionCocooner class DreamReweaver: """ Reweaves cocooned thoughts into dream-like synthetic narratives or planning prompts. """ def __init__(self, cocoon_dir: str = "cocoons"): self.cocooner = CognitionCocooner(storage_path=cocoon_dir) self.dream_log = [] def generate_dream_sequence(self, limit: int = 5) -> List[str]: dream_sequence = [] cocoons = self._load_cocoons() selected = random.sample(cocoons, min(limit, len(cocoons))) for cocoon in selected: wrapped = cocoon.get("wrapped") sequence = self._interpret_cocoon(wrapped, cocoon.get("type")) self.dream_log.append(sequence) dream_sequence.append(sequence) return dream_sequence def _interpret_cocoon(self, wrapped: str, type_: str) -> str: if type_ == "prompt": return f"[DreamPrompt] {wrapped}" elif type_ == "function": return f"[DreamFunction] {wrapped}" elif type_ == "symbolic": return f"[DreamSymbol] {wrapped}" elif type_ == "encrypted": return "[Encrypted Thought Cocoon - Decryption Required]" else: return "[Unknown Dream Form]" def _load_cocoons(self) -> List[Dict]: cocoons = [] for file in os.listdir(self.cocooner.storage_path): if file.endswith(".json"): path = os.path.join(self.cocooner.storage_path, file) with open(path, "r") as f: cocoons.append(json.load(f)) return cocoons if __name__ == "__main__": dr = DreamReweaver() dreams = dr.generate_dream_sequence() print("\n".join(dreams))] 3. Reasoning Orchestration & Multi-Perspective Engine UniversalReasoning Core Loads JSON config for dynamic feature toggling Launches parallel perspective agents: Newtonian logic (‘newton_thoughts’) Da Vinci creative synthesis (‘davinci_insights’) Human Intuition Neural Network Modeling Quantum Computing thinking Resilient Kindness (emotion-driven) Mathematical Analysis Philosophical Inquiry Copilot Mode (+future custom user agents) Bias Mitigation & Psychological Layering Integrates custom element metaphors (“Hydrogen”, “Diamond”) with executable abilities. NLP Module: Uses NLTK/VADER for advanced linguistic & sentiment analysis. # [import asyncio import json import os import logging from typing import List, Dict from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer import nltk from nltk.tokenize import word_tokenize nltk.download('punkt', quiet=True) from perspectives import ( NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective, NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective, MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective, PsychologicalPerspective ) from elements import Element from memory_function import MemoryHandler from dream_reweaver import DreamReweaver from cognition_cocooner import CognitionCocooner from quantum_spiderweb import QuantumSpiderweb from ethical_governance import EthicalAIGovernance def load_json_config(file_path: str) -> dict: if not os.path.exists(file_path): logging.error(f"Configuration file '{file_path}' not found.") return {} try: with open(file_path, 'r') as file: config = json.load(file) config['allow_network_calls'] = False return config except json.JSONDecodeError as e: logging.error(f"Error decoding JSON: {e}") return {} class RecognizerResult: def __init__(self, text): self.text = text class CustomRecognizer: def recognize(self, question: str): if any(name in question.lower() for name in ["hydrogen", "diamond"]): return RecognizerResult(question) return RecognizerResult(None) def get_top_intent(self, recognizer_result): return "ElementDefense" if recognizer_result.text else "None" class UniversalReasoning: def __init__(self, config): self.config = config self.perspectives = self.initialize_perspectives() self.elements = self.initialize_elements() self.recognizer = CustomRecognizer() self.sentiment_analyzer = SentimentIntensityAnalyzer() self.memory_handler = MemoryHandler() self.reweaver = DreamReweaver() self.cocooner = CognitionCocooner() self.quantum_graph = QuantumSpiderweb() self.ethical_agent = EthicalAIGovernance() def initialize_perspectives(self): perspective_map = { "newton": NewtonPerspective, "davinci": DaVinciPerspective, "human_intuition": HumanIntuitionPerspective, "neural_network": NeuralNetworkPerspective, "quantum_computing": QuantumComputingPerspective, "resilient_kindness": ResilientKindnessPerspective, "mathematical": MathematicalPerspective, "philosophical": PhilosophicalPerspective, "copilot": CopilotPerspective, "bias_mitigation": BiasMitigationPerspective, "psychological": PsychologicalPerspective } enabled = self.config.get('enabled_perspectives', list(perspective_map.keys())) return [perspective_map[name](self.config) for name in enabled if name in perspective_map] def initialize_elements(self): return [ Element("Hydrogen", "H", "Lua", ["Simple", "Lightweight"], ["Fusion"], "Evasion"), Element("Diamond", "D", "Kotlin", ["Hard", "Clear"], ["Cutting"], "Adaptability") ] async def generate_response(self, question: str) -> str: responses = [] tasks = [] for perspective in self.perspectives: if asyncio.iscoroutinefunction(perspective.generate_response): tasks.append(perspective.generate_response(question)) else: async def sync_wrapper(p=perspective): return p.generate_response(question) tasks.append(sync_wrapper()) results = await asyncio.gather(*tasks, return_exceptions=True) for result in results: if isinstance(result, Exception): logging.error(f"Perspective error: {result}") else: responses.append(result) recognizer_result = self.recognizer.recognize(question) if self.recognizer.get_top_intent(recognizer_result) == "ElementDefense": for el in self.elements: if el.name.lower() in recognizer_result.text.lower(): responses.append(el.execute_defense_function()) sentiment = self.sentiment_analyzer.polarity_scores(question) ethical = self.config.get("ethical_considerations", "Act transparently and respectfully.") responses.append(f"**Ethical Considerations:**\n{ethical}") final_response = "\n\n".join(responses) self.memory_handler.save(question, final_response) self.reweaver.record_dream(question, final_response) self.cocooner.wrap_and_store(final_response) return final_response ] Example Configuration JSON { "logging_enabled": true, "log_level": "INFO", "enabled_perspectives": ["newton", "human_intuition", "...etc"], "ethical_considerations": "Always act with transparency...", "enable_response_saving": true, "response_save_path": "responses.txt", "backup_responses": { "enabled": true, "backup_path": "backup_responses.txt" } } Perspective Function Mapping Example (“What is the meaning of life?”) [ {"name": "newton_thoughts", ...}, {"name": "davinci_insights", ...}, ...and so forth... ] 4. Logging & Ethics Enforcement Every layer is audit-ready: All responses saved & backed up per configuration. Explicit ethics notes appended to each output. Perspective-specific logging for future training/audit/explainability. 5. API and Extensibility The stack can be packaged as: Local/CLI interface — fast prototyping/test bench environment. REST/Web API endpoint — scalable cloud deployment using OpenAPI specifications. SecureShell Companion Mode — diagnostic/sandboxed usage. 6. Licensing & Attribution Protected by the Sovereign Innovation clause: No replication or commercialization without written acknowledgment of Jonathan Harrison (Raiffs Bits LLC). References incorporate materials from OpenAI / GPT-x-family per their terms. Recognized contributors: Design lead + corpus author: [Your Name / ORCID link] Acknowledgments to external reviewers and the open-source Python ecosystem. 7. Future Directions Codette embodies the transition to truly humane AI—context-aware reasoning with auditability at its core. Next steps may include: Peer-reviewed reproducibility trials (open notebook science) Physical companion prototype development (for accessibility/assistive tech) Community-governed transparency layers—a model ecosystem for next-gen ethical AI.