Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- .gitattributes +1 -0
- app.py +126 -0
- cnn_lstm.keras +3 -0
- feat.py +134 -0
- requirements.txt +9 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
cnn_lstm.keras filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import soundfile as sf
|
| 3 |
+
import numpy as np
|
| 4 |
+
from feat import *
|
| 5 |
+
from tensorflow.keras.models import load_model
|
| 6 |
+
from sklearn.preprocessing import LabelEncoder
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import librosa
|
| 9 |
+
import numpy as np
|
| 10 |
+
from pyAudioAnalysis import audioSegmentation as aS
|
| 11 |
+
import speech_recognition as sr
|
| 12 |
+
import wave
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# Label encoder
|
| 16 |
+
labelencoder = LabelEncoder()
|
| 17 |
+
|
| 18 |
+
# Load the saved model
|
| 19 |
+
model_path = 'cnn_lstm.keras'
|
| 20 |
+
model = load_model(model_path)
|
| 21 |
+
|
| 22 |
+
# Label mapping
|
| 23 |
+
label_mapping = {0: 'angry',
|
| 24 |
+
1: 'excited',
|
| 25 |
+
2: 'fear',
|
| 26 |
+
3: 'happy',
|
| 27 |
+
4: 'neutral',
|
| 28 |
+
5: 'sad'}
|
| 29 |
+
|
| 30 |
+
# Set the title of the Streamlit app
|
| 31 |
+
st.title("Speech Emotion Recognition")
|
| 32 |
+
|
| 33 |
+
# File uploader for audio files
|
| 34 |
+
audio_file = st.file_uploader("Upload an audio file:", type=["mp3", "wav"])
|
| 35 |
+
|
| 36 |
+
# Set the interval for segments
|
| 37 |
+
interval = st.number_input("Set the interval (0.00-15.00 seconds) for emotion detection segments:",
|
| 38 |
+
min_value=0.00, max_value=15.00, value=3.00, step=0.01)
|
| 39 |
+
|
| 40 |
+
# Button to upload
|
| 41 |
+
if st.button("Upload"):
|
| 42 |
+
|
| 43 |
+
if audio_file:
|
| 44 |
+
audio_data, samplerate = sf.read(audio_file)
|
| 45 |
+
# Convert the audio file to WAV format and save it
|
| 46 |
+
output_file_path = 'uploaded_audio.wav'
|
| 47 |
+
sf.write(output_file_path, audio_data, samplerate)
|
| 48 |
+
|
| 49 |
+
st.audio(audio_file)
|
| 50 |
+
else:
|
| 51 |
+
st.error("Please upload an audio file.")
|
| 52 |
+
|
| 53 |
+
# Function to process audio and predict emotions
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def predict_emotions(audio_path, interval):
|
| 57 |
+
audio_data, samplerate = sf.read(audio_path)
|
| 58 |
+
duration = len(audio_data) / samplerate
|
| 59 |
+
emotions = []
|
| 60 |
+
|
| 61 |
+
for start in np.arange(0, duration, interval):
|
| 62 |
+
end = start + interval
|
| 63 |
+
if end > duration:
|
| 64 |
+
end = duration
|
| 65 |
+
segment = audio_data[int(start*samplerate):int(end*samplerate)]
|
| 66 |
+
segment_path = 'segment.wav'
|
| 67 |
+
sf.write(segment_path, segment, samplerate)
|
| 68 |
+
feat = features_extractor(segment_path)
|
| 69 |
+
feat = feat.reshape(1, -1)
|
| 70 |
+
predictions = model.predict(feat)
|
| 71 |
+
predicted_label = np.argmax(predictions, axis=1)
|
| 72 |
+
emotions.append((start, end, label_mapping[predicted_label[0]]))
|
| 73 |
+
|
| 74 |
+
return emotions
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# Button to predict
|
| 78 |
+
if st.button("Predict"):
|
| 79 |
+
if audio_file:
|
| 80 |
+
print()
|
| 81 |
+
emotions = predict_emotions('uploaded_audio.wav', interval=interval)
|
| 82 |
+
|
| 83 |
+
# Create a DataFrame to display emotions
|
| 84 |
+
emotions_df = pd.DataFrame(
|
| 85 |
+
emotions, columns=["Start", "End", "Emotion"])
|
| 86 |
+
st.write(emotions_df)
|
| 87 |
+
|
| 88 |
+
# Save emotions to a log file
|
| 89 |
+
log_file_path = 'emotion_log.csv'
|
| 90 |
+
emotions_df.to_csv(log_file_path, index=False)
|
| 91 |
+
|
| 92 |
+
# Extrapolate major emotions
|
| 93 |
+
major_emotion = emotions_df['Emotion'].mode().values[0]
|
| 94 |
+
st.write(f"Major emotion: {major_emotion}")
|
| 95 |
+
|
| 96 |
+
st.success(f"Emotion log saved to {log_file_path}")
|
| 97 |
+
|
| 98 |
+
# Add download button for the emotion log file
|
| 99 |
+
with open(log_file_path, "rb") as file:
|
| 100 |
+
btn = st.download_button(
|
| 101 |
+
label="Download Emotion Log",
|
| 102 |
+
data=file,
|
| 103 |
+
file_name='emotion_log.csv',
|
| 104 |
+
mime='text/csv'
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
x = word_count1('uploaded_audio.wav')
|
| 108 |
+
y = get_speaking_rate('uploaded_audio.wav')
|
| 109 |
+
|
| 110 |
+
st.write(f'Number of words = {x[0]}')
|
| 111 |
+
st.write(f'Transcript = {x[1]}')
|
| 112 |
+
|
| 113 |
+
st.write(f'Speaking rate = {y} syllables per second')
|
| 114 |
+
|
| 115 |
+
else:
|
| 116 |
+
st.error("Please upload an audio file.")
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# Additional message at the bottom of the page
|
| 120 |
+
st.write("Thank you for using the app!")
|
| 121 |
+
|
| 122 |
+
file_path = 'path/to/your/audio/file'
|
| 123 |
+
try:
|
| 124 |
+
audio, sr = librosa.load(audio_file, sr=None)
|
| 125 |
+
except Exception as e:
|
| 126 |
+
print(f"An error occurred: {e}")
|
cnn_lstm.keras
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dc25f03aa81c2b73b835963bcc5e94312f2dee1df661e46df1180adc387b3b4d
|
| 3 |
+
size 23364981
|
feat.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import librosa
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
def features_extractor(file_name):
|
| 6 |
+
audio, sample_rate = librosa.load(file_name, res_type='kaiser_fast')
|
| 7 |
+
|
| 8 |
+
# Extract MFCC features
|
| 9 |
+
mfccs_features = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=25)
|
| 10 |
+
mfccs_scaled_features = np.mean(mfccs_features.T, axis=0)
|
| 11 |
+
|
| 12 |
+
# Extract Zero Crossing Rate
|
| 13 |
+
zcr = librosa.feature.zero_crossing_rate(y=audio)
|
| 14 |
+
zcr_scaled_features = np.mean(zcr.T, axis=0)
|
| 15 |
+
|
| 16 |
+
# Extract Chroma Features
|
| 17 |
+
chroma = librosa.feature.chroma_stft(y=audio, sr=sample_rate)
|
| 18 |
+
chroma_scaled_features = np.mean(chroma.T, axis=0)
|
| 19 |
+
|
| 20 |
+
# Extract Mel Spectrogram Features
|
| 21 |
+
mel = librosa.feature.melspectrogram(y=audio, sr=sample_rate)
|
| 22 |
+
mel_scaled_features = np.mean(mel.T, axis=0)
|
| 23 |
+
|
| 24 |
+
# Concatenate all features into a single array
|
| 25 |
+
features = np.hstack((mfccs_scaled_features, zcr_scaled_features, chroma_scaled_features, mel_scaled_features))
|
| 26 |
+
|
| 27 |
+
return features
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
#########################################################################################################################
|
| 31 |
+
import speech_recognition as sr
|
| 32 |
+
|
| 33 |
+
def recognize_speech_from_file(audio_file_path):
|
| 34 |
+
# Initialize the recognizer
|
| 35 |
+
recognizer = sr.Recognizer()
|
| 36 |
+
|
| 37 |
+
# Load the audio file
|
| 38 |
+
with sr.AudioFile(audio_file_path) as source:
|
| 39 |
+
|
| 40 |
+
audio_data = recognizer.record(source) # Read the entire audio file
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
# Recognize speech using Google Web Speech API
|
| 44 |
+
text = recognizer.recognize_google(audio_data)
|
| 45 |
+
|
| 46 |
+
return text
|
| 47 |
+
except sr.RequestError as e:
|
| 48 |
+
print(f"Could not request results; {e}")
|
| 49 |
+
except sr.UnknownValueError:
|
| 50 |
+
print("Could not understand the audio")
|
| 51 |
+
|
| 52 |
+
def count_words(text):
|
| 53 |
+
words = text.split()
|
| 54 |
+
return len(words)
|
| 55 |
+
|
| 56 |
+
def word_count(audio_path):
|
| 57 |
+
transcript = recognize_speech_from_file(audio_file_path=audio_path)
|
| 58 |
+
if transcript:
|
| 59 |
+
return [count_words(transcript),transcript]
|
| 60 |
+
|
| 61 |
+
########################################################################################################################
|
| 62 |
+
import speech_recognition as sr
|
| 63 |
+
import wave
|
| 64 |
+
|
| 65 |
+
def recognize_speech_from_file(audio_file_path):
|
| 66 |
+
recognizer = sr.Recognizer()
|
| 67 |
+
audio_file = sr.AudioFile(audio_file_path)
|
| 68 |
+
with audio_file as source:
|
| 69 |
+
audio = recognizer.record(source)
|
| 70 |
+
try:
|
| 71 |
+
transcript = recognizer.recognize_google(audio)
|
| 72 |
+
return transcript
|
| 73 |
+
except sr.UnknownValueError:
|
| 74 |
+
return None
|
| 75 |
+
except sr.RequestError as e:
|
| 76 |
+
print(f"Could not request results from Google Speech Recognition service; {e}")
|
| 77 |
+
return None
|
| 78 |
+
|
| 79 |
+
def count_words(text):
|
| 80 |
+
words = text.split()
|
| 81 |
+
return len(words)
|
| 82 |
+
|
| 83 |
+
def get_audio_duration(audio_file_path):
|
| 84 |
+
with wave.open(audio_file_path, 'r') as audio_file:
|
| 85 |
+
frames = audio_file.getnframes()
|
| 86 |
+
rate = audio_file.getframerate()
|
| 87 |
+
duration = frames / float(rate)
|
| 88 |
+
return duration
|
| 89 |
+
|
| 90 |
+
def word_count1(audio_path):
|
| 91 |
+
transcript = recognize_speech_from_file(audio_file_path=audio_path)
|
| 92 |
+
if transcript:
|
| 93 |
+
duration = get_audio_duration(audio_path)
|
| 94 |
+
return [count_words(transcript), transcript, duration]
|
| 95 |
+
else:
|
| 96 |
+
return [0, None, 0.0]
|
| 97 |
+
|
| 98 |
+
word_count('angry_Akash.wav')
|
| 99 |
+
|
| 100 |
+
# print(word_count1(r'c:\Users\hp\OneDrive\Desktop\Major Emotions\Mixed\Angry-1-3-1.wav'))
|
| 101 |
+
# Example usage
|
| 102 |
+
# audio_path = 'angry_Ansh.wav'
|
| 103 |
+
# result = word_count(audio_path)
|
| 104 |
+
# print(result)
|
| 105 |
+
|
| 106 |
+
import librosa
|
| 107 |
+
import numpy as np
|
| 108 |
+
from pyAudioAnalysis import audioSegmentation as aS
|
| 109 |
+
|
| 110 |
+
def get_speaking_rate(file_path):
|
| 111 |
+
# Load audio file
|
| 112 |
+
y, sr = librosa.load(file_path, sr=None)
|
| 113 |
+
|
| 114 |
+
# Extract speech segments
|
| 115 |
+
segments = aS.silence_removal(y, sr, 0.020, 0.020, smooth_window=1.0, weight=0.3, plot=False)
|
| 116 |
+
|
| 117 |
+
# Total speech duration
|
| 118 |
+
speech_duration = sum([end - start for start, end in segments])
|
| 119 |
+
|
| 120 |
+
# Number of syllables (approximation)
|
| 121 |
+
num_syllables = len(librosa.effects.split(y, top_db=30))
|
| 122 |
+
|
| 123 |
+
# Calculate speaking rate (syllables per second)
|
| 124 |
+
speaking_rate = num_syllables / speech_duration if speech_duration > 0 else 0
|
| 125 |
+
|
| 126 |
+
return speaking_rate
|
| 127 |
+
|
| 128 |
+
# Example usage
|
| 129 |
+
# file_path = 'angry_Ansh.wav'
|
| 130 |
+
# speaking_rate = get_speaking_rate(file_path)[0]
|
| 131 |
+
# print(f"Speaking Rate: {speaking_rate:.2f} syllables per second")
|
| 132 |
+
# print(get_speaking_rate(file_path)[1])
|
| 133 |
+
# print(get_speaking_rate(file_path)[2])
|
| 134 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
librosa
|
| 2 |
+
numpy
|
| 3 |
+
speech_recognition
|
| 4 |
+
pyAudioAnalysis
|
| 5 |
+
streamlit
|
| 6 |
+
soundfile
|
| 7 |
+
tensorflow
|
| 8 |
+
scikit-learn
|
| 9 |
+
pandas
|