Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- 22.6_AffectNet_10K_part2.pt +3 -0
- requirements.txt +9 -0
- streamlit_app.py +181 -0
22.6_AffectNet_10K_part2.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:92ef53adb843700faa3c54ae6f3e0f4105e04e099f9190dd66aafc360afdb2bf
|
| 3 |
+
size 16425358
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
opencv-python==4.10.0.84
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|
| 5 |
+
numpy
|
| 6 |
+
timm
|
| 7 |
+
mediapipe
|
| 8 |
+
pandas
|
| 9 |
+
pillow
|
streamlit_app.py
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import cv2
|
| 3 |
+
import torch
|
| 4 |
+
import torchvision.transforms as transforms
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import numpy as np
|
| 7 |
+
import timm
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import mediapipe as mp
|
| 10 |
+
import time
|
| 11 |
+
import tempfile
|
| 12 |
+
import pandas as pd
|
| 13 |
+
|
| 14 |
+
# Initialize device
|
| 15 |
+
device = "cpu"
|
| 16 |
+
# st.write(f"Using CUDA: {torch.cuda.is_available()}")
|
| 17 |
+
|
| 18 |
+
# Define the transformation to apply to the images
|
| 19 |
+
transform = transforms.Compose(
|
| 20 |
+
[
|
| 21 |
+
transforms.Resize((224, 224)),
|
| 22 |
+
transforms.ToTensor(),
|
| 23 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 24 |
+
]
|
| 25 |
+
)
|
| 26 |
+
change_list = []
|
| 27 |
+
# Load the model
|
| 28 |
+
model = timm.create_model("tf_efficientnet_b0_ns", pretrained=False)
|
| 29 |
+
model.classifier = nn.Sequential(nn.Linear(in_features=1280, out_features=7))
|
| 30 |
+
model = torch.load(
|
| 31 |
+
"22.6_AffectNet_10K_part2.pt",map_location=device
|
| 32 |
+
)
|
| 33 |
+
model.to(device)
|
| 34 |
+
model.eval()
|
| 35 |
+
|
| 36 |
+
# Initialize MediaPipe Face Detection
|
| 37 |
+
mp_face_detection = mp.solutions.face_detection
|
| 38 |
+
mp_drawing = mp.solutions.drawing_utils
|
| 39 |
+
|
| 40 |
+
# Streamlit interface
|
| 41 |
+
st.title("Emotion Detection from Video")
|
| 42 |
+
st.write("Upload a video file to detect emotions.")
|
| 43 |
+
|
| 44 |
+
uploaded_file = st.file_uploader("Choose a video file", type=["mp4", "avi", "mov"])
|
| 45 |
+
|
| 46 |
+
if uploaded_file is not None:
|
| 47 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
| 48 |
+
temp_file.write(uploaded_file.read())
|
| 49 |
+
video_path = temp_file.name
|
| 50 |
+
|
| 51 |
+
cap = cv2.VideoCapture(video_path)
|
| 52 |
+
|
| 53 |
+
histogram = {i: 0 for i in range(7)}
|
| 54 |
+
mat = [[0 for _ in range(7)] for _ in range(7)]
|
| 55 |
+
prev_emotion = None
|
| 56 |
+
current_emotion = None
|
| 57 |
+
|
| 58 |
+
begin = time.time()
|
| 59 |
+
with mp_face_detection.FaceDetection(
|
| 60 |
+
model_selection=0, min_detection_confidence=0.5
|
| 61 |
+
) as face_detection:
|
| 62 |
+
while cap.isOpened():
|
| 63 |
+
ret, frame = cap.read()
|
| 64 |
+
if not ret:
|
| 65 |
+
break
|
| 66 |
+
|
| 67 |
+
# Convert frame to RGB for MediaPipe
|
| 68 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 69 |
+
|
| 70 |
+
# Process the frame and detect faces
|
| 71 |
+
results = face_detection.process(rgb_frame)
|
| 72 |
+
|
| 73 |
+
if results.detections:
|
| 74 |
+
for detection in results.detections:
|
| 75 |
+
# Get bounding box
|
| 76 |
+
bboxC = detection.location_data.relative_bounding_box
|
| 77 |
+
ih, iw, _ = frame.shape
|
| 78 |
+
x, y, w, h = (
|
| 79 |
+
int(bboxC.xmin * iw),
|
| 80 |
+
int(bboxC.ymin * ih),
|
| 81 |
+
int(bboxC.width * iw),
|
| 82 |
+
int(bboxC.height * ih),
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Extract the region of interest (the face)
|
| 86 |
+
face = frame[y : y + h, x : x + w]
|
| 87 |
+
|
| 88 |
+
# Convert the face to a PIL image
|
| 89 |
+
face_pil = Image.fromarray(cv2.cvtColor(face, cv2.COLOR_BGR2RGB))
|
| 90 |
+
|
| 91 |
+
# Apply transformations
|
| 92 |
+
face_tensor = transform(face_pil).unsqueeze(0).to(device)
|
| 93 |
+
|
| 94 |
+
# Pass the face through the neural network
|
| 95 |
+
with torch.no_grad():
|
| 96 |
+
output = model(face_tensor)
|
| 97 |
+
_, predicted = torch.max(output, 1)
|
| 98 |
+
|
| 99 |
+
label_dict = {
|
| 100 |
+
0: "angry",
|
| 101 |
+
1: "disgust",
|
| 102 |
+
2: "fear",
|
| 103 |
+
3: "happy",
|
| 104 |
+
4: "neutral",
|
| 105 |
+
5: "sad",
|
| 106 |
+
6: "surprised",
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
# Draw a rectangle around the face and label it with the prediction
|
| 110 |
+
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
|
| 111 |
+
label = f"{label_dict[predicted.item()]}"
|
| 112 |
+
current_emotion = predicted.item()
|
| 113 |
+
if current_emotion != prev_emotion:
|
| 114 |
+
current_time = time.time() - begin
|
| 115 |
+
if prev_emotion != None:
|
| 116 |
+
st.write(
|
| 117 |
+
f"Change detected: {label_dict[prev_emotion]} -> {label_dict[current_emotion]} at {current_time}"
|
| 118 |
+
)
|
| 119 |
+
change_list.append(
|
| 120 |
+
f"Change detected: {label_dict[prev_emotion]} -> {label_dict[current_emotion]} at {current_time}"
|
| 121 |
+
)
|
| 122 |
+
if prev_emotion is not None:
|
| 123 |
+
mat[current_emotion][prev_emotion] += 1
|
| 124 |
+
|
| 125 |
+
prev_emotion = current_emotion
|
| 126 |
+
histogram[predicted.item()] += 1
|
| 127 |
+
cv2.putText(
|
| 128 |
+
frame,
|
| 129 |
+
label,
|
| 130 |
+
(x, y - 10),
|
| 131 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
| 132 |
+
0.9,
|
| 133 |
+
(255, 0, 0),
|
| 134 |
+
2,
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
# Display the resulting frame
|
| 138 |
+
st.image(frame, channels="BGR")
|
| 139 |
+
|
| 140 |
+
# Release the capture and close the windows
|
| 141 |
+
cap.release()
|
| 142 |
+
|
| 143 |
+
end = time.time()
|
| 144 |
+
st.write(f"Total runtime of the program is {end - begin}")
|
| 145 |
+
|
| 146 |
+
# Plot histogram
|
| 147 |
+
st.write("Emotion Distribution")
|
| 148 |
+
x = ["angry", "disgust", "fear", "happy", "neutral", "sad", "surprised"]
|
| 149 |
+
y = list(histogram.values())
|
| 150 |
+
total = sum(y)
|
| 151 |
+
y_new = [(i / total) * 100 for i in y]
|
| 152 |
+
|
| 153 |
+
st.bar_chart({"Emotions": x, "Percentage": y_new})
|
| 154 |
+
|
| 155 |
+
print(mat)
|
| 156 |
+
data = {
|
| 157 |
+
"angry": mat[0],
|
| 158 |
+
"disgust": mat[1],
|
| 159 |
+
"fear": mat[2],
|
| 160 |
+
"happy": mat[3],
|
| 161 |
+
"neutral": mat[4],
|
| 162 |
+
"sad": mat[5],
|
| 163 |
+
"surprise": mat[6],
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
st.write("Change Matrix")
|
| 167 |
+
st.write("Y - axis -> initial emotion")
|
| 168 |
+
st.write("X - axis -> next emotion")
|
| 169 |
+
df = pd.DataFrame(
|
| 170 |
+
data,
|
| 171 |
+
index=["angry", "disgust", "fear", "happy", "neutral", "sad", "surprised"],
|
| 172 |
+
)
|
| 173 |
+
st.table(df)
|
| 174 |
+
# for i in mat:
|
| 175 |
+
# st.write(i[7], i[0:7])
|
| 176 |
+
|
| 177 |
+
st.write("Change List")
|
| 178 |
+
st.write(change_list)
|
| 179 |
+
|
| 180 |
+
else:
|
| 181 |
+
st.write("Please upload a video file to start emotion detection.")
|