Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,123 +1,98 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 4 |
import os
|
|
|
|
| 5 |
import threading
|
| 6 |
-
import
|
| 7 |
-
from ultralytics import YOLO
|
| 8 |
from langchain_core.messages import HumanMessage
|
| 9 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 10 |
|
| 11 |
-
# Set up Google API Key
|
| 12 |
os.environ["GOOGLE_API_KEY"] = "AIzaSyDOBd0_yNLckwsZJrpb9-CqTHFUx0Ah3R8" # Replace with your API Key
|
|
|
|
|
|
|
| 13 |
gemini_model = ChatGoogleGenerativeAI(model="gemini-1.5-flash")
|
| 14 |
|
| 15 |
-
# Load YOLO model
|
| 16 |
yolo_model = YOLO("best.pt")
|
| 17 |
names = yolo_model.names
|
| 18 |
|
| 19 |
-
# Constants for ROI detection
|
| 20 |
-
current_date = time.strftime("%Y-%m-%d")
|
| 21 |
-
crop_folder = f"crop_{current_date}"
|
| 22 |
-
if not os.path.exists(crop_folder):
|
| 23 |
-
os.makedirs(crop_folder)
|
| 24 |
-
|
| 25 |
-
processed_track_ids = set()
|
| 26 |
-
lock = threading.Lock()
|
| 27 |
-
|
| 28 |
def encode_image_to_base64(image):
|
| 29 |
_, img_buffer = cv2.imencode('.jpg', image)
|
| 30 |
return base64.b64encode(img_buffer).decode('utf-8')
|
| 31 |
|
| 32 |
-
def analyze_image_with_gemini(
|
| 33 |
-
if
|
| 34 |
return "No image available for analysis."
|
| 35 |
|
| 36 |
-
|
| 37 |
-
message = HumanMessage(
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
try:
|
| 44 |
response = gemini_model.invoke([message])
|
| 45 |
return response.content
|
| 46 |
except Exception as e:
|
| 47 |
return f"Error processing image: {e}"
|
| 48 |
|
| 49 |
-
def save_crop_image(crop, track_id):
|
| 50 |
-
filename = f"{crop_folder}/{track_id}.jpg"
|
| 51 |
-
cv2.imwrite(filename, crop)
|
| 52 |
-
return filename
|
| 53 |
-
|
| 54 |
-
def process_crop_image(crop, track_id, responses):
|
| 55 |
-
response = analyze_image_with_gemini(crop)
|
| 56 |
-
responses.append((track_id, response))
|
| 57 |
-
|
| 58 |
def process_video(video_path):
|
| 59 |
cap = cv2.VideoCapture(video_path)
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
out = cv2.VideoWriter(output_path, fourcc, 20.0, (1020, 500))
|
| 63 |
-
|
| 64 |
-
responses = []
|
| 65 |
|
| 66 |
-
|
|
|
|
| 67 |
ret, frame = cap.read()
|
| 68 |
if not ret:
|
| 69 |
break
|
| 70 |
-
frame = cv2.resize(frame, (1020, 500))
|
| 71 |
|
|
|
|
| 72 |
results = yolo_model.track(frame, persist=True)
|
|
|
|
| 73 |
if results[0].boxes is not None:
|
| 74 |
boxes = results[0].boxes.xyxy.int().cpu().tolist()
|
|
|
|
| 75 |
track_ids = results[0].boxes.id.int().cpu().tolist() if results[0].boxes.id is not None else [-1] * len(boxes)
|
| 76 |
|
| 77 |
-
for box, track_id in zip(boxes, track_ids):
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
save_crop_image(crop, track_id)
|
| 83 |
-
threading.Thread(target=process_crop_image, args=(crop, track_id, responses)).start()
|
| 84 |
-
processed_track_ids.add(track_id)
|
| 85 |
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
cap.release()
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
return output_path, responses
|
| 92 |
-
|
| 93 |
-
def gradio_interface(video_file):
|
| 94 |
-
if video_file is None:
|
| 95 |
-
return "No video uploaded.", None, None
|
| 96 |
-
|
| 97 |
-
video_path = "uploaded_video.mp4"
|
| 98 |
-
with open(video_path, "wb") as f:
|
| 99 |
-
f.write(video_file.read())
|
| 100 |
-
|
| 101 |
-
processed_video, analysis_results = process_video(video_path)
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
)
|
| 108 |
|
| 109 |
-
|
| 110 |
-
app = gr.Interface(
|
| 111 |
fn=gradio_interface,
|
| 112 |
-
inputs=
|
| 113 |
-
outputs=
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
gr.JSON(label="AI Analysis Results")
|
| 117 |
-
],
|
| 118 |
-
title="Bottle Label Checking using YOLO & Gemini AI",
|
| 119 |
-
description="Upload a video to detect bottles, crop images, and analyze labels using Google Gemini AI."
|
| 120 |
)
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
| 1 |
import cv2
|
| 2 |
import numpy as np
|
| 3 |
+
from ultralytics import YOLO
|
| 4 |
+
import cvzone
|
| 5 |
+
import base64
|
| 6 |
import os
|
| 7 |
+
import time
|
| 8 |
import threading
|
| 9 |
+
import gradio as gr
|
|
|
|
| 10 |
from langchain_core.messages import HumanMessage
|
| 11 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 12 |
|
| 13 |
+
# ✅ Set up Google API Key
|
| 14 |
os.environ["GOOGLE_API_KEY"] = "AIzaSyDOBd0_yNLckwsZJrpb9-CqTHFUx0Ah3R8" # Replace with your API Key
|
| 15 |
+
|
| 16 |
+
# ✅ Initialize the Gemini model
|
| 17 |
gemini_model = ChatGoogleGenerativeAI(model="gemini-1.5-flash")
|
| 18 |
|
| 19 |
+
# Load the YOLO model
|
| 20 |
yolo_model = YOLO("best.pt")
|
| 21 |
names = yolo_model.names
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def encode_image_to_base64(image):
|
| 24 |
_, img_buffer = cv2.imencode('.jpg', image)
|
| 25 |
return base64.b64encode(img_buffer).decode('utf-8')
|
| 26 |
|
| 27 |
+
def analyze_image_with_gemini(image):
|
| 28 |
+
if image is None:
|
| 29 |
return "No image available for analysis."
|
| 30 |
|
| 31 |
+
image_data = encode_image_to_base64(image)
|
| 32 |
+
message = HumanMessage(content=[
|
| 33 |
+
{"type": "text", "text": """
|
| 34 |
+
Analyze this image and determine if the label is present on the bottle.
|
| 35 |
+
Return the result strictly in a structured table format:
|
| 36 |
+
|
| 37 |
+
| Label Present | Damage |
|
| 38 |
+
|--------------|--------|
|
| 39 |
+
| Yes/No | Yes/No |
|
| 40 |
+
"""},
|
| 41 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_data}"}, "description": "Detected product"}
|
| 42 |
+
])
|
| 43 |
try:
|
| 44 |
response = gemini_model.invoke([message])
|
| 45 |
return response.content
|
| 46 |
except Exception as e:
|
| 47 |
return f"Error processing image: {e}"
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
def process_video(video_path):
|
| 50 |
cap = cv2.VideoCapture(video_path)
|
| 51 |
+
if not cap.isOpened():
|
| 52 |
+
return "Error: Could not open video file."
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
frame_list = []
|
| 55 |
+
while True:
|
| 56 |
ret, frame = cap.read()
|
| 57 |
if not ret:
|
| 58 |
break
|
|
|
|
| 59 |
|
| 60 |
+
frame = cv2.resize(frame, (1020, 500))
|
| 61 |
results = yolo_model.track(frame, persist=True)
|
| 62 |
+
|
| 63 |
if results[0].boxes is not None:
|
| 64 |
boxes = results[0].boxes.xyxy.int().cpu().tolist()
|
| 65 |
+
class_ids = results[0].boxes.cls.int().cpu().tolist()
|
| 66 |
track_ids = results[0].boxes.id.int().cpu().tolist() if results[0].boxes.id is not None else [-1] * len(boxes)
|
| 67 |
|
| 68 |
+
for box, track_id, class_id in zip(boxes, track_ids, class_ids):
|
| 69 |
+
x1, y1, x2, y2 = box
|
| 70 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 71 |
+
cvzone.putTextRect(frame, f'ID: {track_id}', (x2, y2), 1, 1)
|
| 72 |
+
cvzone.putTextRect(frame, f'{names[class_id]}', (x1, y1), 1, 1)
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
crop = frame[y1:y2, x1:x2]
|
| 75 |
+
response = analyze_image_with_gemini(crop)
|
| 76 |
+
print(response)
|
| 77 |
+
|
| 78 |
+
frame_list.append(frame)
|
| 79 |
|
| 80 |
cap.release()
|
| 81 |
+
return frame_list[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
def gradio_interface(video):
|
| 84 |
+
temp_video_path = "temp_video.mp4"
|
| 85 |
+
with open(temp_video_path, "wb") as f:
|
| 86 |
+
f.write(video)
|
| 87 |
+
return process_video(temp_video_path)
|
| 88 |
|
| 89 |
+
iface = gr.Interface(
|
|
|
|
| 90 |
fn=gradio_interface,
|
| 91 |
+
inputs=gr.Video(label="Upload Video"),
|
| 92 |
+
outputs=gr.Image(label="Processed Frame"),
|
| 93 |
+
title="YOLO + Gemini AI Video Analysis",
|
| 94 |
+
description="Upload a video to detect objects and analyze them using Gemini AI."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
)
|
| 96 |
|
| 97 |
+
if __name__ == "__main__":
|
| 98 |
+
iface.launch()
|