Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- .gitignore +51 -0
- README.md +187 -7
- app.py +159 -0
- main.py +578 -0
- packages.txt +2 -0
- requirements.txt +11 -0
.gitignore
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
|
| 23 |
+
# Virtual Environment
|
| 24 |
+
venv/
|
| 25 |
+
env/
|
| 26 |
+
ENV/
|
| 27 |
+
.venv/
|
| 28 |
+
|
| 29 |
+
# IDE
|
| 30 |
+
.idea/
|
| 31 |
+
.vscode/
|
| 32 |
+
*.swp
|
| 33 |
+
*.swo
|
| 34 |
+
|
| 35 |
+
# Project specific
|
| 36 |
+
inputs/*
|
| 37 |
+
outputs/*
|
| 38 |
+
!inputs/.gitkeep
|
| 39 |
+
!outputs/.gitkeep
|
| 40 |
+
inputs/
|
| 41 |
+
outputs/
|
| 42 |
+
|
| 43 |
+
# Model files
|
| 44 |
+
*.pth
|
| 45 |
+
*.onnx
|
| 46 |
+
*.pt
|
| 47 |
+
|
| 48 |
+
# Logs
|
| 49 |
+
*.log
|
| 50 |
+
|
| 51 |
+
certificate.pem
|
README.md
CHANGED
|
@@ -1,12 +1,192 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
|
| 4 |
-
colorFrom: red
|
| 5 |
-
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.13.2
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: redact-video-demo
|
| 3 |
+
app_file: app.py
|
|
|
|
|
|
|
| 4 |
sdk: gradio
|
| 5 |
sdk_version: 5.13.2
|
|
|
|
|
|
|
| 6 |
---
|
| 7 |
+
# Video Object Detection with Moondream
|
| 8 |
+
|
| 9 |
+
This tool uses Moondream2, a powerful yet lightweight vision-language model, to detect and visualize objects in videos. Moondream can recognize a wide variety of objects, people, text, and more with high accuracy while being much smaller than traditional models.
|
| 10 |
+
|
| 11 |
+
## About Moondream
|
| 12 |
+
|
| 13 |
+
Moondream is a tiny yet powerful vision-language model that can analyze images and answer questions about them. It's designed to be lightweight and efficient while maintaining high accuracy. Some key features:
|
| 14 |
+
|
| 15 |
+
- Only 2B parameters
|
| 16 |
+
- Fast inference with minimal resource requirements
|
| 17 |
+
- Supports CPU and GPU execution
|
| 18 |
+
- Open source and free to use
|
| 19 |
+
- Can detect almost anything you can describe in natural language
|
| 20 |
+
|
| 21 |
+
Links:
|
| 22 |
+
- [GitHub Repository](https://github.com/vikhyat/moondream)
|
| 23 |
+
- [Hugging Face Space](https://huggingface.co/vikhyatk/moondream2)
|
| 24 |
+
- [Python Package](https://pypi.org/project/moondream/)
|
| 25 |
+
|
| 26 |
+
## Features
|
| 27 |
+
|
| 28 |
+
- Real-time object detection in videos using Moondream2
|
| 29 |
+
- Multiple visualization styles:
|
| 30 |
+
- Censor: Black boxes over detected objects
|
| 31 |
+
- YOLO: Traditional bounding boxes with labels
|
| 32 |
+
- Hitmarker: Call of Duty style crosshair markers
|
| 33 |
+
- Optional grid-based detection for improved accuracy
|
| 34 |
+
- Flexible object type detection using natural language
|
| 35 |
+
- Frame-by-frame processing with IoU-based merging
|
| 36 |
+
- Batch processing of multiple videos
|
| 37 |
+
- Web-compatible output format
|
| 38 |
+
- User-friendly web interface
|
| 39 |
+
- Command-line interface for automation
|
| 40 |
+
|
| 41 |
+
## Requirements
|
| 42 |
+
|
| 43 |
+
- Python 3.8+
|
| 44 |
+
- OpenCV (cv2)
|
| 45 |
+
- PyTorch
|
| 46 |
+
- Transformers
|
| 47 |
+
- Pillow (PIL)
|
| 48 |
+
- tqdm
|
| 49 |
+
- ffmpeg
|
| 50 |
+
- numpy
|
| 51 |
+
- gradio (for web interface)
|
| 52 |
+
|
| 53 |
+
## Installation
|
| 54 |
+
|
| 55 |
+
1. Clone this repository and create a new virtual environment
|
| 56 |
+
~~~bash
|
| 57 |
+
git clone https://github.com/parsakhaz/object-detect-video.git
|
| 58 |
+
python -m venv .venv
|
| 59 |
+
source .venv/bin/activate
|
| 60 |
+
~~~
|
| 61 |
+
2. Install the required packages:
|
| 62 |
+
~~~bash
|
| 63 |
+
pip install -r requirements.txt
|
| 64 |
+
~~~
|
| 65 |
+
3. Install ffmpeg:
|
| 66 |
+
- On Ubuntu/Debian: `sudo apt-get install ffmpeg libvips`
|
| 67 |
+
- On macOS: `brew install ffmpeg`
|
| 68 |
+
- On Windows: Download from [ffmpeg.org](https://ffmpeg.org/download.html)
|
| 69 |
+
|
| 70 |
+
## Usage
|
| 71 |
+
|
| 72 |
+
### Web Interface
|
| 73 |
+
|
| 74 |
+
1. Start the web interface:
|
| 75 |
+
```bash
|
| 76 |
+
python app.py
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
2. Open the provided URL in your browser
|
| 80 |
+
|
| 81 |
+
3. Use the interface to:
|
| 82 |
+
- Upload your video
|
| 83 |
+
- Specify what to censor (e.g., face, logo, text)
|
| 84 |
+
- Adjust processing speed and quality
|
| 85 |
+
- Configure grid size for detection
|
| 86 |
+
- Process and download the censored video
|
| 87 |
+
|
| 88 |
+
### Command Line Interface
|
| 89 |
+
|
| 90 |
+
1. Create an `inputs` directory in the same folder as the script:
|
| 91 |
+
~~~bash
|
| 92 |
+
mkdir inputs
|
| 93 |
+
~~~
|
| 94 |
+
|
| 95 |
+
2. Place your video files in the `inputs` directory. Supported formats:
|
| 96 |
+
- .mp4
|
| 97 |
+
- .avi
|
| 98 |
+
- .mov
|
| 99 |
+
- .mkv
|
| 100 |
+
- .webm
|
| 101 |
+
|
| 102 |
+
3. Run the script:
|
| 103 |
+
~~~bash
|
| 104 |
+
python main.py
|
| 105 |
+
~~~
|
| 106 |
+
|
| 107 |
+
### Optional Arguments:
|
| 108 |
+
- `--test`: Process only first 3 seconds of each video (useful for testing detection settings)
|
| 109 |
+
~~~bash
|
| 110 |
+
python main.py --test
|
| 111 |
+
~~~
|
| 112 |
+
|
| 113 |
+
- `--preset`: Choose FFmpeg encoding preset (affects output quality vs. speed)
|
| 114 |
+
~~~bash
|
| 115 |
+
python main.py --preset ultrafast # Fastest, lower quality
|
| 116 |
+
python main.py --preset veryslow # Slowest, highest quality
|
| 117 |
+
~~~
|
| 118 |
+
|
| 119 |
+
- `--detect`: Specify what object type to detect (using natural language)
|
| 120 |
+
```bash
|
| 121 |
+
python main.py --detect person # Detect people
|
| 122 |
+
python main.py --detect "red car" # Detect red cars
|
| 123 |
+
python main.py --detect "person wearing a hat" # Detect people with hats
|
| 124 |
+
```
|
| 125 |
+
|
| 126 |
+
- `--box-style`: Choose visualization style
|
| 127 |
+
```bash
|
| 128 |
+
python main.py --box-style censor # Black boxes (default)
|
| 129 |
+
python main.py --box-style yolo # YOLO-style boxes with labels
|
| 130 |
+
python main.py --box-style hitmarker # COD-style hitmarkers
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
- `--rows` and `--cols`: Enable grid-based detection by splitting frames
|
| 134 |
+
~~~bash
|
| 135 |
+
python main.py --rows 2 --cols 2 # Split each frame into 2x2 grid
|
| 136 |
+
python main.py --rows 3 --cols 3 # Split each frame into 3x3 grid
|
| 137 |
+
```
|
| 138 |
+
|
| 139 |
+
You can combine arguments:
|
| 140 |
+
```bash
|
| 141 |
+
python main.py --detect "person wearing sunglasses" --box-style yolo --test --preset "fast" --rows 2 --cols 2
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
### Visualization Styles
|
| 145 |
+
|
| 146 |
+
The tool supports three different visualization styles for detected objects:
|
| 147 |
+
|
| 148 |
+
1. **Censor** (default)
|
| 149 |
+
- Places solid black rectangles over detected objects
|
| 150 |
+
- Best for privacy and content moderation
|
| 151 |
+
- Completely obscures the detected region
|
| 152 |
+
|
| 153 |
+
2. **YOLO**
|
| 154 |
+
- Traditional object detection style
|
| 155 |
+
- Red bounding box around detected objects
|
| 156 |
+
- Label showing object type above the box
|
| 157 |
+
- Good for analysis and debugging
|
| 158 |
+
|
| 159 |
+
3. **Hitmarker**
|
| 160 |
+
- Call of Duty inspired visualization
|
| 161 |
+
- White crosshair marker at center of detected objects
|
| 162 |
+
- Small label above the marker
|
| 163 |
+
- Stylistic choice for gaming-inspired visualization
|
| 164 |
+
|
| 165 |
+
Choose the style that best fits your use case using the `--box-style` argument.
|
| 166 |
+
|
| 167 |
+
## Output
|
| 168 |
+
|
| 169 |
+
Processed videos will be saved in the `outputs` directory with the format:
|
| 170 |
+
`[style]_[object_type]_[original_filename].mp4`
|
| 171 |
+
|
| 172 |
+
For example:
|
| 173 |
+
- `censor_face_video.mp4`
|
| 174 |
+
- `yolo_person_video.mp4`
|
| 175 |
+
- `hitmarker_car_video.mp4`
|
| 176 |
+
|
| 177 |
+
The output videos will include:
|
| 178 |
+
- Original video content
|
| 179 |
+
- Selected visualization style for detected objects
|
| 180 |
+
- Web-compatible H.264 encoding
|
| 181 |
+
|
| 182 |
+
## Notes
|
| 183 |
|
| 184 |
+
- Processing time depends on video length, grid size, and GPU availability
|
| 185 |
+
- GPU is strongly recommended for faster processing
|
| 186 |
+
- Requires sufficient disk space for temporary files
|
| 187 |
+
- Detection quality may vary based on object type and video quality
|
| 188 |
+
- Detection accuracy depends on Moondream2's ability to recognize the specified object type
|
| 189 |
+
- Grid-based detection should only be used when necessary due to significant performance impact
|
| 190 |
+
- Web interface provides real-time progress updates and error messages
|
| 191 |
+
- Different visualization styles may be more suitable for different use cases
|
| 192 |
+
- Moondream can detect almost anything you can describe in natural language
|
app.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import os
|
| 4 |
+
from main import load_moondream, process_video
|
| 5 |
+
import tempfile
|
| 6 |
+
import shutil
|
| 7 |
+
|
| 8 |
+
# Get absolute path to workspace root
|
| 9 |
+
WORKSPACE_ROOT = os.path.dirname(os.path.abspath(__file__))
|
| 10 |
+
|
| 11 |
+
# Initialize model globally for reuse
|
| 12 |
+
print("Loading Moondream model...")
|
| 13 |
+
model, tokenizer = load_moondream()
|
| 14 |
+
|
| 15 |
+
def process_video_file(video_file, detect_keyword, box_style, ffmpeg_preset, rows, cols, test_mode):
|
| 16 |
+
"""Process a video file through the Gradio interface."""
|
| 17 |
+
try:
|
| 18 |
+
if not video_file:
|
| 19 |
+
raise gr.Error("Please upload a video file")
|
| 20 |
+
|
| 21 |
+
# Ensure input/output directories exist using absolute paths
|
| 22 |
+
inputs_dir = os.path.join(WORKSPACE_ROOT, 'inputs')
|
| 23 |
+
outputs_dir = os.path.join(WORKSPACE_ROOT, 'outputs')
|
| 24 |
+
os.makedirs(inputs_dir, exist_ok=True)
|
| 25 |
+
os.makedirs(outputs_dir, exist_ok=True)
|
| 26 |
+
|
| 27 |
+
# Copy uploaded video to inputs directory
|
| 28 |
+
video_filename = f"input_{os.path.basename(video_file)}"
|
| 29 |
+
input_video_path = os.path.join(inputs_dir, video_filename)
|
| 30 |
+
shutil.copy2(video_file, input_video_path)
|
| 31 |
+
|
| 32 |
+
try:
|
| 33 |
+
# Process the video
|
| 34 |
+
output_path = process_video(
|
| 35 |
+
input_video_path,
|
| 36 |
+
detect_keyword,
|
| 37 |
+
test_mode=test_mode,
|
| 38 |
+
ffmpeg_preset=ffmpeg_preset,
|
| 39 |
+
rows=rows,
|
| 40 |
+
cols=cols,
|
| 41 |
+
box_style=box_style
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# Verify output exists and is readable
|
| 45 |
+
if not output_path or not os.path.exists(output_path):
|
| 46 |
+
print(f"Warning: Output path {output_path} does not exist")
|
| 47 |
+
# Try to find the output based on expected naming convention
|
| 48 |
+
expected_output = os.path.join(outputs_dir, f'{box_style}_{detect_keyword}_{video_filename}')
|
| 49 |
+
if os.path.exists(expected_output):
|
| 50 |
+
output_path = expected_output
|
| 51 |
+
else:
|
| 52 |
+
# Try searching in outputs directory for any matching file
|
| 53 |
+
matching_files = [f for f in os.listdir(outputs_dir) if f.startswith(f'{box_style}_{detect_keyword}_')]
|
| 54 |
+
if matching_files:
|
| 55 |
+
output_path = os.path.join(outputs_dir, matching_files[0])
|
| 56 |
+
else:
|
| 57 |
+
raise gr.Error("Failed to locate output video")
|
| 58 |
+
|
| 59 |
+
# Convert output path to absolute path if it isn't already
|
| 60 |
+
if not os.path.isabs(output_path):
|
| 61 |
+
output_path = os.path.join(WORKSPACE_ROOT, output_path)
|
| 62 |
+
|
| 63 |
+
print(f"Returning output path: {output_path}")
|
| 64 |
+
return output_path
|
| 65 |
+
|
| 66 |
+
finally:
|
| 67 |
+
# Clean up input file
|
| 68 |
+
try:
|
| 69 |
+
if os.path.exists(input_video_path):
|
| 70 |
+
os.remove(input_video_path)
|
| 71 |
+
except:
|
| 72 |
+
pass
|
| 73 |
+
|
| 74 |
+
except Exception as e:
|
| 75 |
+
print(f"Error in process_video_file: {str(e)}")
|
| 76 |
+
raise gr.Error(f"Error processing video: {str(e)}")
|
| 77 |
+
|
| 78 |
+
# Create the Gradio interface
|
| 79 |
+
with gr.Blocks(title="Video Object Detection with Moondream") as app:
|
| 80 |
+
gr.Markdown("# Video Object Detection with Moondream")
|
| 81 |
+
gr.Markdown("""
|
| 82 |
+
This app uses [Moondream](https://github.com/vikhyat/moondream), a powerful yet lightweight vision-language model,
|
| 83 |
+
to detect and visualize objects in videos. Moondream can recognize a wide variety of objects, people, text, and more
|
| 84 |
+
with high accuracy while being much smaller than traditional models.
|
| 85 |
+
|
| 86 |
+
Upload a video and specify what you want to detect. The app will process each frame using Moondream and visualize
|
| 87 |
+
the detections using your chosen style.
|
| 88 |
+
""")
|
| 89 |
+
|
| 90 |
+
with gr.Row():
|
| 91 |
+
with gr.Column():
|
| 92 |
+
# Input components
|
| 93 |
+
video_input = gr.Video(label="Upload Video")
|
| 94 |
+
detect_input = gr.Textbox(
|
| 95 |
+
label="What to Detect",
|
| 96 |
+
placeholder="e.g. face, logo, text, person, car, dog, etc.",
|
| 97 |
+
value="face",
|
| 98 |
+
info="Moondream can detect almost anything you can describe in natural language"
|
| 99 |
+
)
|
| 100 |
+
box_style_input = gr.Radio(
|
| 101 |
+
choices=['censor', 'yolo', 'hitmarker'],
|
| 102 |
+
value='censor',
|
| 103 |
+
label="Visualization Style",
|
| 104 |
+
info="Choose how to display detections"
|
| 105 |
+
)
|
| 106 |
+
preset_input = gr.Dropdown(
|
| 107 |
+
choices=['ultrafast', 'superfast', 'veryfast', 'faster', 'fast', 'medium', 'slow', 'slower', 'veryslow'],
|
| 108 |
+
value='medium',
|
| 109 |
+
label="Processing Speed (faster = lower quality)"
|
| 110 |
+
)
|
| 111 |
+
with gr.Row():
|
| 112 |
+
rows_input = gr.Slider(minimum=1, maximum=4, value=1, step=1, label="Grid Rows")
|
| 113 |
+
cols_input = gr.Slider(minimum=1, maximum=4, value=1, step=1, label="Grid Columns")
|
| 114 |
+
|
| 115 |
+
test_mode_input = gr.Checkbox(
|
| 116 |
+
label="Test Mode (Process first 3 seconds only)",
|
| 117 |
+
value=True,
|
| 118 |
+
info="Enable to quickly test settings on a short clip before processing the full video (recommended)"
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
process_btn = gr.Button("Process Video", variant="primary")
|
| 122 |
+
gr.Markdown("""
|
| 123 |
+
Note: Processing in test mode will only process the first 3 seconds of the video and is recommended for testing settings.
|
| 124 |
+
""")
|
| 125 |
+
|
| 126 |
+
gr.Markdown("""
|
| 127 |
+
We can get a rough estimate of how long the video will take to process by multiplying the videos framerate * seconds * the number of rows and columns and assuming 0.12 seconds processing time per detection.
|
| 128 |
+
For example, a 3 second video at 30fps with 2x2 grid, the estimated time is 3 * 30 * 2 * 2 * 0.12 = 43.2 seconds (tested on a 4090 GPU).
|
| 129 |
+
""")
|
| 130 |
+
|
| 131 |
+
with gr.Column():
|
| 132 |
+
# Output components
|
| 133 |
+
video_output = gr.Video(label="Processed Video")
|
| 134 |
+
|
| 135 |
+
# About section under the video output
|
| 136 |
+
gr.Markdown("""
|
| 137 |
+
### About Moondream
|
| 138 |
+
Moondream is a tiny yet powerful vision-language model that can analyze images and answer questions about them.
|
| 139 |
+
It's designed to be lightweight and efficient while maintaining high accuracy. Some key features:
|
| 140 |
+
- Only 2B parameters (compared to 80B+ in other models)
|
| 141 |
+
- Fast inference with minimal resource requirements
|
| 142 |
+
- Supports CPU and GPU execution
|
| 143 |
+
- Open source and free to use
|
| 144 |
+
|
| 145 |
+
Links:
|
| 146 |
+
- [GitHub Repository](https://github.com/vikhyat/moondream)
|
| 147 |
+
- [Hugging Face Space](https://huggingface.co/vikhyatk/moondream2)
|
| 148 |
+
- [Python Package](https://pypi.org/project/moondream/)
|
| 149 |
+
""")
|
| 150 |
+
|
| 151 |
+
# Event handlers
|
| 152 |
+
process_btn.click(
|
| 153 |
+
fn=process_video_file,
|
| 154 |
+
inputs=[video_input, detect_input, box_style_input, preset_input, rows_input, cols_input, test_mode_input],
|
| 155 |
+
outputs=video_output
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
if __name__ == "__main__":
|
| 159 |
+
app.launch(share=True)
|
main.py
ADDED
|
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import cv2, os, subprocess, argparse
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
import numpy as np
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
|
| 10 |
+
# Constants
|
| 11 |
+
TEST_MODE_DURATION = 3 # Process only first 3 seconds in test mode
|
| 12 |
+
FFMPEG_PRESETS = ['ultrafast', 'superfast', 'veryfast', 'faster', 'fast', 'medium', 'slow', 'slower', 'veryslow']
|
| 13 |
+
FONT = cv2.FONT_HERSHEY_SIMPLEX # Font for YOLO-style labels
|
| 14 |
+
|
| 15 |
+
# Detection parameters
|
| 16 |
+
IOU_THRESHOLD = 0.5 # IoU threshold for considering boxes related
|
| 17 |
+
|
| 18 |
+
# Hitmarker parameters
|
| 19 |
+
HITMARKER_SIZE = 20 # Size of the hitmarker in pixels
|
| 20 |
+
HITMARKER_GAP = 3 # Size of the empty space in the middle (reduced from 8)
|
| 21 |
+
HITMARKER_THICKNESS = 2 # Thickness of hitmarker lines
|
| 22 |
+
HITMARKER_COLOR = (255, 255, 255) # White color for hitmarker
|
| 23 |
+
HITMARKER_SHADOW_COLOR = (80, 80, 80) # Lighter gray for shadow effect
|
| 24 |
+
HITMARKER_SHADOW_OFFSET = 1 # Smaller shadow offset
|
| 25 |
+
|
| 26 |
+
def load_moondream():
|
| 27 |
+
"""Load Moondream model and tokenizer."""
|
| 28 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 29 |
+
"vikhyatk/moondream2",
|
| 30 |
+
trust_remote_code=True,
|
| 31 |
+
device_map={"": "cuda"}
|
| 32 |
+
)
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
|
| 34 |
+
return model, tokenizer
|
| 35 |
+
|
| 36 |
+
def get_video_properties(video_path):
|
| 37 |
+
"""Get basic video properties."""
|
| 38 |
+
video = cv2.VideoCapture(video_path)
|
| 39 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
| 40 |
+
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 41 |
+
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 42 |
+
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 43 |
+
video.release()
|
| 44 |
+
return {'fps': fps, 'frame_count': frame_count, 'width': width, 'height': height}
|
| 45 |
+
|
| 46 |
+
def is_valid_box(box):
|
| 47 |
+
"""Check if box coordinates are reasonable."""
|
| 48 |
+
x1, y1, x2, y2 = box
|
| 49 |
+
width = x2 - x1
|
| 50 |
+
height = y2 - y1
|
| 51 |
+
|
| 52 |
+
# Reject boxes that are too large (over 90% of frame in both dimensions)
|
| 53 |
+
if width > 0.9 and height > 0.9:
|
| 54 |
+
return False
|
| 55 |
+
|
| 56 |
+
# Reject boxes that are too small (less than 1% of frame)
|
| 57 |
+
if width < 0.01 or height < 0.01:
|
| 58 |
+
return False
|
| 59 |
+
|
| 60 |
+
return True
|
| 61 |
+
|
| 62 |
+
def split_frame_into_tiles(frame, rows, cols):
|
| 63 |
+
"""Split a frame into a grid of tiles."""
|
| 64 |
+
height, width = frame.shape[:2]
|
| 65 |
+
tile_height = height // rows
|
| 66 |
+
tile_width = width // cols
|
| 67 |
+
tiles = []
|
| 68 |
+
tile_positions = []
|
| 69 |
+
|
| 70 |
+
for i in range(rows):
|
| 71 |
+
for j in range(cols):
|
| 72 |
+
y1 = i * tile_height
|
| 73 |
+
y2 = (i + 1) * tile_height if i < rows - 1 else height
|
| 74 |
+
x1 = j * tile_width
|
| 75 |
+
x2 = (j + 1) * tile_width if j < cols - 1 else width
|
| 76 |
+
|
| 77 |
+
tile = frame[y1:y2, x1:x2]
|
| 78 |
+
tiles.append(tile)
|
| 79 |
+
tile_positions.append((x1, y1, x2, y2))
|
| 80 |
+
|
| 81 |
+
return tiles, tile_positions
|
| 82 |
+
|
| 83 |
+
def convert_tile_coords_to_frame(box, tile_pos, frame_shape):
|
| 84 |
+
"""Convert coordinates from tile space to frame space."""
|
| 85 |
+
frame_height, frame_width = frame_shape[:2]
|
| 86 |
+
tile_x1, tile_y1, tile_x2, tile_y2 = tile_pos
|
| 87 |
+
tile_width = tile_x2 - tile_x1
|
| 88 |
+
tile_height = tile_y2 - tile_y1
|
| 89 |
+
|
| 90 |
+
x1_tile_abs = box[0] * tile_width
|
| 91 |
+
y1_tile_abs = box[1] * tile_height
|
| 92 |
+
x2_tile_abs = box[2] * tile_width
|
| 93 |
+
y2_tile_abs = box[3] * tile_height
|
| 94 |
+
|
| 95 |
+
x1_frame_abs = tile_x1 + x1_tile_abs
|
| 96 |
+
y1_frame_abs = tile_y1 + y1_tile_abs
|
| 97 |
+
x2_frame_abs = tile_x1 + x2_tile_abs
|
| 98 |
+
y2_frame_abs = tile_y1 + y2_tile_abs
|
| 99 |
+
|
| 100 |
+
x1_norm = x1_frame_abs / frame_width
|
| 101 |
+
y1_norm = y1_frame_abs / frame_height
|
| 102 |
+
x2_norm = x2_frame_abs / frame_width
|
| 103 |
+
y2_norm = y2_frame_abs / frame_height
|
| 104 |
+
|
| 105 |
+
x1_norm = max(0.0, min(1.0, x1_norm))
|
| 106 |
+
y1_norm = max(0.0, min(1.0, y1_norm))
|
| 107 |
+
x2_norm = max(0.0, min(1.0, x2_norm))
|
| 108 |
+
y2_norm = max(0.0, min(1.0, y2_norm))
|
| 109 |
+
|
| 110 |
+
return [x1_norm, y1_norm, x2_norm, y2_norm]
|
| 111 |
+
|
| 112 |
+
def merge_tile_detections(tile_detections, iou_threshold=0.5):
|
| 113 |
+
"""Merge detections from different tiles using NMS-like approach."""
|
| 114 |
+
if not tile_detections:
|
| 115 |
+
return []
|
| 116 |
+
|
| 117 |
+
all_boxes = []
|
| 118 |
+
all_keywords = []
|
| 119 |
+
|
| 120 |
+
# Collect all boxes and their keywords
|
| 121 |
+
for detections in tile_detections:
|
| 122 |
+
for box, keyword in detections:
|
| 123 |
+
all_boxes.append(box)
|
| 124 |
+
all_keywords.append(keyword)
|
| 125 |
+
|
| 126 |
+
if not all_boxes:
|
| 127 |
+
return []
|
| 128 |
+
|
| 129 |
+
# Convert to numpy for easier processing
|
| 130 |
+
boxes = np.array(all_boxes)
|
| 131 |
+
|
| 132 |
+
# Calculate areas
|
| 133 |
+
x1 = boxes[:, 0]
|
| 134 |
+
y1 = boxes[:, 1]
|
| 135 |
+
x2 = boxes[:, 2]
|
| 136 |
+
y2 = boxes[:, 3]
|
| 137 |
+
areas = (x2 - x1) * (y2 - y1)
|
| 138 |
+
|
| 139 |
+
# Sort boxes by area
|
| 140 |
+
order = areas.argsort()[::-1]
|
| 141 |
+
|
| 142 |
+
keep = []
|
| 143 |
+
while order.size > 0:
|
| 144 |
+
i = order[0]
|
| 145 |
+
keep.append(i)
|
| 146 |
+
|
| 147 |
+
if order.size == 1:
|
| 148 |
+
break
|
| 149 |
+
|
| 150 |
+
# Calculate IoU with rest of boxes
|
| 151 |
+
xx1 = np.maximum(x1[i], x1[order[1:]])
|
| 152 |
+
yy1 = np.maximum(y1[i], y1[order[1:]])
|
| 153 |
+
xx2 = np.minimum(x2[i], x2[order[1:]])
|
| 154 |
+
yy2 = np.minimum(y2[i], y2[order[1:]])
|
| 155 |
+
|
| 156 |
+
w = np.maximum(0.0, xx2 - xx1)
|
| 157 |
+
h = np.maximum(0.0, yy2 - yy1)
|
| 158 |
+
inter = w * h
|
| 159 |
+
|
| 160 |
+
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
| 161 |
+
|
| 162 |
+
# Get indices of boxes with IoU less than threshold
|
| 163 |
+
inds = np.where(ovr <= iou_threshold)[0]
|
| 164 |
+
order = order[inds + 1]
|
| 165 |
+
|
| 166 |
+
return [(all_boxes[i], all_keywords[i]) for i in keep]
|
| 167 |
+
|
| 168 |
+
def detect_ads_in_frame(model, tokenizer, image, detect_keyword, rows=1, cols=1):
|
| 169 |
+
"""Detect objects in a frame using grid-based detection."""
|
| 170 |
+
if rows == 1 and cols == 1:
|
| 171 |
+
return detect_ads_in_frame_single(model, tokenizer, image, detect_keyword)
|
| 172 |
+
|
| 173 |
+
# Convert numpy array to PIL Image if needed
|
| 174 |
+
if not isinstance(image, Image.Image):
|
| 175 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 176 |
+
|
| 177 |
+
# Split frame into tiles
|
| 178 |
+
tiles, tile_positions = split_frame_into_tiles(image, rows, cols)
|
| 179 |
+
|
| 180 |
+
# Process each tile
|
| 181 |
+
tile_detections = []
|
| 182 |
+
for tile, tile_pos in zip(tiles, tile_positions):
|
| 183 |
+
# Convert tile to PIL Image
|
| 184 |
+
tile_pil = Image.fromarray(tile)
|
| 185 |
+
|
| 186 |
+
# Detect objects in tile
|
| 187 |
+
response = model.detect(tile_pil, detect_keyword)
|
| 188 |
+
|
| 189 |
+
if response and "objects" in response and response["objects"]:
|
| 190 |
+
objects = response["objects"]
|
| 191 |
+
tile_objects = []
|
| 192 |
+
|
| 193 |
+
for obj in objects:
|
| 194 |
+
if all(k in obj for k in ['x_min', 'y_min', 'x_max', 'y_max']):
|
| 195 |
+
box = [
|
| 196 |
+
obj['x_min'],
|
| 197 |
+
obj['y_min'],
|
| 198 |
+
obj['x_max'],
|
| 199 |
+
obj['y_max']
|
| 200 |
+
]
|
| 201 |
+
|
| 202 |
+
if is_valid_box(box):
|
| 203 |
+
# Convert tile coordinates to frame coordinates
|
| 204 |
+
frame_box = convert_tile_coords_to_frame(box, tile_pos, image.shape)
|
| 205 |
+
tile_objects.append((frame_box, detect_keyword))
|
| 206 |
+
|
| 207 |
+
if tile_objects: # Only append if we found valid objects
|
| 208 |
+
tile_detections.append(tile_objects)
|
| 209 |
+
|
| 210 |
+
# Merge detections from all tiles
|
| 211 |
+
merged_detections = merge_tile_detections(tile_detections)
|
| 212 |
+
return merged_detections
|
| 213 |
+
|
| 214 |
+
def detect_ads_in_frame_single(model, tokenizer, image, detect_keyword):
|
| 215 |
+
"""Single-frame detection function."""
|
| 216 |
+
detected_objects = []
|
| 217 |
+
|
| 218 |
+
# Convert numpy array to PIL Image if needed
|
| 219 |
+
if not isinstance(image, Image.Image):
|
| 220 |
+
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
| 221 |
+
|
| 222 |
+
# Detect objects
|
| 223 |
+
response = model.detect(image, detect_keyword)
|
| 224 |
+
|
| 225 |
+
# Check if we have valid objects
|
| 226 |
+
if response and "objects" in response and response["objects"]:
|
| 227 |
+
objects = response["objects"]
|
| 228 |
+
|
| 229 |
+
for obj in objects:
|
| 230 |
+
if all(k in obj for k in ['x_min', 'y_min', 'x_max', 'y_max']):
|
| 231 |
+
box = [
|
| 232 |
+
obj['x_min'],
|
| 233 |
+
obj['y_min'],
|
| 234 |
+
obj['x_max'],
|
| 235 |
+
obj['y_max']
|
| 236 |
+
]
|
| 237 |
+
# If box is valid (not full-frame), add it
|
| 238 |
+
if is_valid_box(box):
|
| 239 |
+
detected_objects.append((box, detect_keyword))
|
| 240 |
+
|
| 241 |
+
return detected_objects
|
| 242 |
+
|
| 243 |
+
def draw_hitmarker(frame, center_x, center_y, size=HITMARKER_SIZE, color=HITMARKER_COLOR, shadow=True):
|
| 244 |
+
"""Draw a COD-style hitmarker cross with more space in the middle."""
|
| 245 |
+
half_size = size // 2
|
| 246 |
+
|
| 247 |
+
# Draw shadow first if enabled
|
| 248 |
+
if shadow:
|
| 249 |
+
# Top-left to center shadow
|
| 250 |
+
cv2.line(frame,
|
| 251 |
+
(center_x - half_size + HITMARKER_SHADOW_OFFSET, center_y - half_size + HITMARKER_SHADOW_OFFSET),
|
| 252 |
+
(center_x - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET, center_y - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET),
|
| 253 |
+
HITMARKER_SHADOW_COLOR, HITMARKER_THICKNESS)
|
| 254 |
+
# Top-right to center shadow
|
| 255 |
+
cv2.line(frame,
|
| 256 |
+
(center_x + half_size + HITMARKER_SHADOW_OFFSET, center_y - half_size + HITMARKER_SHADOW_OFFSET),
|
| 257 |
+
(center_x + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET, center_y - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET),
|
| 258 |
+
HITMARKER_SHADOW_COLOR, HITMARKER_THICKNESS)
|
| 259 |
+
# Bottom-left to center shadow
|
| 260 |
+
cv2.line(frame,
|
| 261 |
+
(center_x - half_size + HITMARKER_SHADOW_OFFSET, center_y + half_size + HITMARKER_SHADOW_OFFSET),
|
| 262 |
+
(center_x - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET, center_y + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET),
|
| 263 |
+
HITMARKER_SHADOW_COLOR, HITMARKER_THICKNESS)
|
| 264 |
+
# Bottom-right to center shadow
|
| 265 |
+
cv2.line(frame,
|
| 266 |
+
(center_x + half_size + HITMARKER_SHADOW_OFFSET, center_y + half_size + HITMARKER_SHADOW_OFFSET),
|
| 267 |
+
(center_x + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET, center_y + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET),
|
| 268 |
+
HITMARKER_SHADOW_COLOR, HITMARKER_THICKNESS)
|
| 269 |
+
|
| 270 |
+
# Draw main hitmarker
|
| 271 |
+
# Top-left to center
|
| 272 |
+
cv2.line(frame,
|
| 273 |
+
(center_x - half_size, center_y - half_size),
|
| 274 |
+
(center_x - HITMARKER_GAP, center_y - HITMARKER_GAP),
|
| 275 |
+
color, HITMARKER_THICKNESS)
|
| 276 |
+
# Top-right to center
|
| 277 |
+
cv2.line(frame,
|
| 278 |
+
(center_x + half_size, center_y - half_size),
|
| 279 |
+
(center_x + HITMARKER_GAP, center_y - HITMARKER_GAP),
|
| 280 |
+
color, HITMARKER_THICKNESS)
|
| 281 |
+
# Bottom-left to center
|
| 282 |
+
cv2.line(frame,
|
| 283 |
+
(center_x - half_size, center_y + half_size),
|
| 284 |
+
(center_x - HITMARKER_GAP, center_y + HITMARKER_GAP),
|
| 285 |
+
color, HITMARKER_THICKNESS)
|
| 286 |
+
# Bottom-right to center
|
| 287 |
+
cv2.line(frame,
|
| 288 |
+
(center_x + half_size, center_y + half_size),
|
| 289 |
+
(center_x + HITMARKER_GAP, center_y + HITMARKER_GAP),
|
| 290 |
+
color, HITMARKER_THICKNESS)
|
| 291 |
+
|
| 292 |
+
def draw_ad_boxes(frame, detected_objects, detect_keyword, box_style='censor'):
|
| 293 |
+
"""Draw detection visualizations over detected objects.
|
| 294 |
+
|
| 295 |
+
Args:
|
| 296 |
+
frame: The video frame to draw on
|
| 297 |
+
detected_objects: List of (box, keyword) tuples
|
| 298 |
+
detect_keyword: The detection keyword
|
| 299 |
+
box_style: Visualization style ('censor', 'yolo', or 'hitmarker')
|
| 300 |
+
"""
|
| 301 |
+
height, width = frame.shape[:2]
|
| 302 |
+
|
| 303 |
+
for (box, keyword) in detected_objects:
|
| 304 |
+
try:
|
| 305 |
+
# Convert normalized coordinates to pixel coordinates
|
| 306 |
+
x1 = int(box[0] * width)
|
| 307 |
+
y1 = int(box[1] * height)
|
| 308 |
+
x2 = int(box[2] * width)
|
| 309 |
+
y2 = int(box[3] * height)
|
| 310 |
+
|
| 311 |
+
# Ensure coordinates are within frame boundaries
|
| 312 |
+
x1 = max(0, min(x1, width-1))
|
| 313 |
+
y1 = max(0, min(y1, height-1))
|
| 314 |
+
x2 = max(0, min(x2, width-1))
|
| 315 |
+
y2 = max(0, min(y2, height-1))
|
| 316 |
+
|
| 317 |
+
# Only draw if box has reasonable size
|
| 318 |
+
if x2 > x1 and y2 > y1:
|
| 319 |
+
if box_style == 'censor':
|
| 320 |
+
# Draw solid black rectangle
|
| 321 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 0), -1)
|
| 322 |
+
elif box_style == 'yolo':
|
| 323 |
+
# Draw red rectangle with thicker line
|
| 324 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 3)
|
| 325 |
+
|
| 326 |
+
# Add label with background
|
| 327 |
+
label = detect_keyword # Use exact capitalization
|
| 328 |
+
label_size = cv2.getTextSize(label, FONT, 0.7, 2)[0]
|
| 329 |
+
cv2.rectangle(frame, (x1, y1-25), (x1 + label_size[0], y1), (0, 0, 255), -1)
|
| 330 |
+
cv2.putText(frame, label, (x1, y1-6), FONT, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
|
| 331 |
+
elif box_style == 'hitmarker':
|
| 332 |
+
# Calculate center of the box
|
| 333 |
+
center_x = (x1 + x2) // 2
|
| 334 |
+
center_y = (y1 + y2) // 2
|
| 335 |
+
|
| 336 |
+
# Draw hitmarker at the center
|
| 337 |
+
draw_hitmarker(frame, center_x, center_y)
|
| 338 |
+
|
| 339 |
+
# Optional: Add small label above hitmarker
|
| 340 |
+
label = detect_keyword # Use exact capitalization
|
| 341 |
+
label_size = cv2.getTextSize(label, FONT, 0.5, 1)[0]
|
| 342 |
+
cv2.putText(frame, label,
|
| 343 |
+
(center_x - label_size[0]//2, center_y - HITMARKER_SIZE - 5),
|
| 344 |
+
FONT, 0.5, HITMARKER_COLOR, 1, cv2.LINE_AA)
|
| 345 |
+
except Exception as e:
|
| 346 |
+
print(f"Error drawing {box_style} style box: {str(e)}")
|
| 347 |
+
|
| 348 |
+
return frame
|
| 349 |
+
|
| 350 |
+
def filter_temporal_outliers(detections_dict):
|
| 351 |
+
"""Filter out extremely large detections that take up most of the frame.
|
| 352 |
+
Only keeps detections that are reasonable in size.
|
| 353 |
+
|
| 354 |
+
Args:
|
| 355 |
+
detections_dict: Dictionary of {frame_number: [(box, keyword), ...]}
|
| 356 |
+
"""
|
| 357 |
+
filtered_detections = {}
|
| 358 |
+
|
| 359 |
+
for t, detections in detections_dict.items():
|
| 360 |
+
# Only keep detections that aren't too large
|
| 361 |
+
valid_detections = []
|
| 362 |
+
for box, keyword in detections:
|
| 363 |
+
# Calculate box size as percentage of frame
|
| 364 |
+
width = box[2] - box[0]
|
| 365 |
+
height = box[3] - box[1]
|
| 366 |
+
area = width * height
|
| 367 |
+
|
| 368 |
+
# If box is less than 90% of frame, keep it
|
| 369 |
+
if area < 0.9:
|
| 370 |
+
valid_detections.append((box, keyword))
|
| 371 |
+
|
| 372 |
+
if valid_detections:
|
| 373 |
+
filtered_detections[t] = valid_detections
|
| 374 |
+
|
| 375 |
+
return filtered_detections
|
| 376 |
+
|
| 377 |
+
def describe_frames(video_path, model, tokenizer, detect_keyword, test_mode=False, rows=1, cols=1):
|
| 378 |
+
"""Extract and detect objects in frames."""
|
| 379 |
+
props = get_video_properties(video_path)
|
| 380 |
+
fps = props['fps']
|
| 381 |
+
|
| 382 |
+
# If in test mode, only process first 3 seconds
|
| 383 |
+
if test_mode:
|
| 384 |
+
frame_count = min(int(fps * TEST_MODE_DURATION), props['frame_count'])
|
| 385 |
+
else:
|
| 386 |
+
frame_count = props['frame_count']
|
| 387 |
+
|
| 388 |
+
ad_detections = {} # Store detection results by frame number
|
| 389 |
+
|
| 390 |
+
print("Extracting frames and detecting objects...")
|
| 391 |
+
video = cv2.VideoCapture(video_path)
|
| 392 |
+
|
| 393 |
+
# Process every frame
|
| 394 |
+
frame_count_processed = 0
|
| 395 |
+
with tqdm(total=frame_count) as pbar:
|
| 396 |
+
while frame_count_processed < frame_count:
|
| 397 |
+
ret, frame = video.read()
|
| 398 |
+
if not ret:
|
| 399 |
+
break
|
| 400 |
+
|
| 401 |
+
# Detect objects in the frame
|
| 402 |
+
detected_objects = detect_ads_in_frame(model, tokenizer, frame, detect_keyword, rows=rows, cols=cols)
|
| 403 |
+
|
| 404 |
+
# Store results for every frame, even if empty
|
| 405 |
+
ad_detections[frame_count_processed] = detected_objects
|
| 406 |
+
|
| 407 |
+
frame_count_processed += 1
|
| 408 |
+
pbar.update(1)
|
| 409 |
+
|
| 410 |
+
video.release()
|
| 411 |
+
|
| 412 |
+
if frame_count_processed == 0:
|
| 413 |
+
print("No frames could be read from video")
|
| 414 |
+
return {}
|
| 415 |
+
|
| 416 |
+
# Filter out only extremely large detections
|
| 417 |
+
ad_detections = filter_temporal_outliers(ad_detections)
|
| 418 |
+
return ad_detections
|
| 419 |
+
|
| 420 |
+
def create_detection_video(video_path, ad_detections, detect_keyword, output_path=None, ffmpeg_preset='medium', test_mode=False, box_style='censor'):
|
| 421 |
+
"""Create video with detection boxes."""
|
| 422 |
+
if output_path is None:
|
| 423 |
+
# Create outputs directory if it doesn't exist
|
| 424 |
+
outputs_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'outputs')
|
| 425 |
+
os.makedirs(outputs_dir, exist_ok=True)
|
| 426 |
+
|
| 427 |
+
# Clean the detect_keyword for filename
|
| 428 |
+
safe_keyword = "".join(x for x in detect_keyword if x.isalnum() or x in (' ', '_', '-'))
|
| 429 |
+
safe_keyword = safe_keyword.replace(' ', '_')
|
| 430 |
+
|
| 431 |
+
# Create output filename
|
| 432 |
+
base_name = os.path.splitext(os.path.basename(video_path))[0]
|
| 433 |
+
output_path = os.path.join(outputs_dir, f'{box_style}_{safe_keyword}_{base_name}.mp4')
|
| 434 |
+
|
| 435 |
+
print(f"Will save output to: {output_path}")
|
| 436 |
+
|
| 437 |
+
props = get_video_properties(video_path)
|
| 438 |
+
fps, width, height = props['fps'], props['width'], props['height']
|
| 439 |
+
|
| 440 |
+
# If in test mode, only process first few seconds
|
| 441 |
+
if test_mode:
|
| 442 |
+
frame_count = min(int(fps * TEST_MODE_DURATION), props['frame_count'])
|
| 443 |
+
else:
|
| 444 |
+
frame_count = props['frame_count']
|
| 445 |
+
|
| 446 |
+
video = cv2.VideoCapture(video_path)
|
| 447 |
+
|
| 448 |
+
# Create temp output path by adding _temp before the extension
|
| 449 |
+
base, ext = os.path.splitext(output_path)
|
| 450 |
+
temp_output = f"{base}_temp{ext}"
|
| 451 |
+
|
| 452 |
+
out = cv2.VideoWriter(
|
| 453 |
+
temp_output,
|
| 454 |
+
cv2.VideoWriter_fourcc(*'mp4v'),
|
| 455 |
+
fps,
|
| 456 |
+
(width, height)
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
print("Creating detection video...")
|
| 460 |
+
frame_count_processed = 0
|
| 461 |
+
|
| 462 |
+
with tqdm(total=frame_count) as pbar:
|
| 463 |
+
while frame_count_processed < frame_count:
|
| 464 |
+
ret, frame = video.read()
|
| 465 |
+
if not ret:
|
| 466 |
+
break
|
| 467 |
+
|
| 468 |
+
# Get detections for this exact frame
|
| 469 |
+
if frame_count_processed in ad_detections:
|
| 470 |
+
current_detections = ad_detections[frame_count_processed]
|
| 471 |
+
if current_detections:
|
| 472 |
+
frame = draw_ad_boxes(frame, current_detections, detect_keyword, box_style=box_style)
|
| 473 |
+
|
| 474 |
+
out.write(frame)
|
| 475 |
+
frame_count_processed += 1
|
| 476 |
+
pbar.update(1)
|
| 477 |
+
|
| 478 |
+
video.release()
|
| 479 |
+
out.release()
|
| 480 |
+
|
| 481 |
+
# Convert to web-compatible format more efficiently
|
| 482 |
+
try:
|
| 483 |
+
subprocess.run([
|
| 484 |
+
'ffmpeg', '-y',
|
| 485 |
+
'-i', temp_output,
|
| 486 |
+
'-c:v', 'libx264',
|
| 487 |
+
'-preset', ffmpeg_preset,
|
| 488 |
+
'-crf', '23',
|
| 489 |
+
'-movflags', '+faststart', # Better web playback
|
| 490 |
+
'-loglevel', 'error',
|
| 491 |
+
output_path
|
| 492 |
+
], check=True)
|
| 493 |
+
|
| 494 |
+
os.remove(temp_output) # Remove the temporary file
|
| 495 |
+
|
| 496 |
+
if not os.path.exists(output_path):
|
| 497 |
+
print(f"Warning: FFmpeg completed but output file not found at {output_path}")
|
| 498 |
+
return None
|
| 499 |
+
|
| 500 |
+
return output_path
|
| 501 |
+
|
| 502 |
+
except subprocess.CalledProcessError as e:
|
| 503 |
+
print(f"Error running FFmpeg: {str(e)}")
|
| 504 |
+
if os.path.exists(temp_output):
|
| 505 |
+
os.remove(temp_output)
|
| 506 |
+
return None
|
| 507 |
+
|
| 508 |
+
def process_video(video_path, detect_keyword, test_mode=False, ffmpeg_preset='medium', rows=1, cols=1, box_style='censor'):
|
| 509 |
+
"""Process a single video file."""
|
| 510 |
+
print(f"\nProcessing: {video_path}")
|
| 511 |
+
print(f"Looking for: {detect_keyword}")
|
| 512 |
+
|
| 513 |
+
# Load model
|
| 514 |
+
print("Loading Moondream model...")
|
| 515 |
+
model, tokenizer = load_moondream()
|
| 516 |
+
|
| 517 |
+
# Process video - detect objects
|
| 518 |
+
ad_detections = describe_frames(video_path, model, tokenizer, detect_keyword, test_mode, rows, cols)
|
| 519 |
+
|
| 520 |
+
# Create video with detection boxes
|
| 521 |
+
output_path = create_detection_video(video_path, ad_detections, detect_keyword,
|
| 522 |
+
ffmpeg_preset=ffmpeg_preset, test_mode=test_mode,
|
| 523 |
+
box_style=box_style)
|
| 524 |
+
|
| 525 |
+
if output_path is None:
|
| 526 |
+
print("\nError: Failed to create output video")
|
| 527 |
+
return None
|
| 528 |
+
|
| 529 |
+
print(f"\nOutput saved to: {output_path}")
|
| 530 |
+
return output_path
|
| 531 |
+
|
| 532 |
+
def main():
|
| 533 |
+
"""Process all videos in the inputs directory."""
|
| 534 |
+
parser = argparse.ArgumentParser(description='Detect objects in videos using Moondream2')
|
| 535 |
+
parser.add_argument('--test', action='store_true', help='Process only first 3 seconds of each video')
|
| 536 |
+
parser.add_argument('--preset', choices=FFMPEG_PRESETS, default='medium',
|
| 537 |
+
help='FFmpeg encoding preset (default: medium). Faster presets = lower quality')
|
| 538 |
+
parser.add_argument('--detect', type=str, default='face',
|
| 539 |
+
help='Object to detect in the video (default: face, use --detect "thing to detect" to override)')
|
| 540 |
+
parser.add_argument('--rows', type=int, default=1,
|
| 541 |
+
help='Number of rows to split each frame into (default: 1)')
|
| 542 |
+
parser.add_argument('--cols', type=int, default=1,
|
| 543 |
+
help='Number of columns to split each frame into (default: 1)')
|
| 544 |
+
parser.add_argument('--box-style', choices=['censor', 'yolo', 'hitmarker'], default='censor',
|
| 545 |
+
help='Style of detection visualization (default: censor)')
|
| 546 |
+
args = parser.parse_args()
|
| 547 |
+
|
| 548 |
+
input_dir = 'inputs'
|
| 549 |
+
os.makedirs(input_dir, exist_ok=True)
|
| 550 |
+
os.makedirs('outputs', exist_ok=True)
|
| 551 |
+
|
| 552 |
+
video_files = [f for f in os.listdir(input_dir)
|
| 553 |
+
if f.lower().endswith(('.mp4', '.avi', '.mov', '.mkv', '.webm'))]
|
| 554 |
+
|
| 555 |
+
if not video_files:
|
| 556 |
+
print("No video files found in 'inputs' directory")
|
| 557 |
+
return
|
| 558 |
+
|
| 559 |
+
print(f"Found {len(video_files)} videos to process")
|
| 560 |
+
print(f"Will detect: {args.detect}")
|
| 561 |
+
if args.test:
|
| 562 |
+
print("Running in test mode - processing only first 3 seconds of each video")
|
| 563 |
+
print(f"Using FFmpeg preset: {args.preset}")
|
| 564 |
+
print(f"Grid size: {args.rows}x{args.cols}")
|
| 565 |
+
print(f"Box style: {args.box_style}")
|
| 566 |
+
|
| 567 |
+
success_count = 0
|
| 568 |
+
for video_file in video_files:
|
| 569 |
+
video_path = os.path.join(input_dir, video_file)
|
| 570 |
+
output_path = process_video(video_path, args.detect, test_mode=args.test, ffmpeg_preset=args.preset,
|
| 571 |
+
rows=args.rows, cols=args.cols, box_style=args.box_style)
|
| 572 |
+
if output_path:
|
| 573 |
+
success_count += 1
|
| 574 |
+
|
| 575 |
+
print(f"\nProcessing complete. Successfully processed {success_count} out of {len(video_files)} videos.")
|
| 576 |
+
|
| 577 |
+
if __name__ == "__main__":
|
| 578 |
+
main()
|
packages.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
libvips
|
| 2 |
+
ffmpeg
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
opencv-python
|
| 5 |
+
pillow
|
| 6 |
+
numpy
|
| 7 |
+
tqdm
|
| 8 |
+
ffmpeg-python
|
| 9 |
+
einops
|
| 10 |
+
pyvips
|
| 11 |
+
accelerate
|