Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,25 +20,28 @@ print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
|
| 20 |
print("Loading Moondream model...")
|
| 21 |
model, tokenizer = load_moondream()
|
| 22 |
|
|
|
|
| 23 |
# Uncomment for Hugging Face Spaces
|
| 24 |
@spaces.GPU(duration=120)
|
| 25 |
-
def process_video_file(
|
|
|
|
|
|
|
| 26 |
"""Process a video file through the Gradio interface."""
|
| 27 |
try:
|
| 28 |
if not video_file:
|
| 29 |
raise gr.Error("Please upload a video file")
|
| 30 |
-
|
| 31 |
# Ensure input/output directories exist using absolute paths
|
| 32 |
-
inputs_dir = os.path.join(WORKSPACE_ROOT,
|
| 33 |
-
outputs_dir = os.path.join(WORKSPACE_ROOT,
|
| 34 |
os.makedirs(inputs_dir, exist_ok=True)
|
| 35 |
os.makedirs(outputs_dir, exist_ok=True)
|
| 36 |
-
|
| 37 |
# Copy uploaded video to inputs directory
|
| 38 |
video_filename = f"input_{os.path.basename(video_file)}"
|
| 39 |
input_video_path = os.path.join(inputs_dir, video_filename)
|
| 40 |
shutil.copy2(video_file, input_video_path)
|
| 41 |
-
|
| 42 |
try:
|
| 43 |
# Process the video
|
| 44 |
output_path = process_video(
|
|
@@ -48,31 +51,37 @@ def process_video_file(video_file, detect_keyword, box_style, ffmpeg_preset, row
|
|
| 48 |
ffmpeg_preset=ffmpeg_preset,
|
| 49 |
rows=rows,
|
| 50 |
cols=cols,
|
| 51 |
-
box_style=box_style
|
| 52 |
)
|
| 53 |
-
|
| 54 |
# Verify output exists and is readable
|
| 55 |
if not output_path or not os.path.exists(output_path):
|
| 56 |
print(f"Warning: Output path {output_path} does not exist")
|
| 57 |
# Try to find the output based on expected naming convention
|
| 58 |
-
expected_output = os.path.join(
|
|
|
|
|
|
|
| 59 |
if os.path.exists(expected_output):
|
| 60 |
output_path = expected_output
|
| 61 |
else:
|
| 62 |
# Try searching in outputs directory for any matching file
|
| 63 |
-
matching_files = [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
if matching_files:
|
| 65 |
output_path = os.path.join(outputs_dir, matching_files[0])
|
| 66 |
else:
|
| 67 |
raise gr.Error("Failed to locate output video")
|
| 68 |
-
|
| 69 |
# Convert output path to absolute path if it isn't already
|
| 70 |
if not os.path.isabs(output_path):
|
| 71 |
output_path = os.path.join(WORKSPACE_ROOT, output_path)
|
| 72 |
-
|
| 73 |
print(f"Returning output path: {output_path}")
|
| 74 |
return output_path
|
| 75 |
-
|
| 76 |
finally:
|
| 77 |
# Clean up input file
|
| 78 |
try:
|
|
@@ -80,92 +89,113 @@ def process_video_file(video_file, detect_keyword, box_style, ffmpeg_preset, row
|
|
| 80 |
os.remove(input_video_path)
|
| 81 |
except:
|
| 82 |
pass
|
| 83 |
-
|
| 84 |
except Exception as e:
|
| 85 |
print(f"Error in process_video_file: {str(e)}")
|
| 86 |
raise gr.Error(f"Error processing video: {str(e)}")
|
| 87 |
|
|
|
|
| 88 |
# Create the Gradio interface
|
| 89 |
with gr.Blocks(title="Promptable Video Redaction") as app:
|
| 90 |
gr.Markdown("# Promptable Video Redaction with Moondream")
|
| 91 |
-
gr.Markdown(
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
video
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
""")
|
| 100 |
-
|
| 101 |
with gr.Row():
|
| 102 |
with gr.Column():
|
| 103 |
# Input components
|
| 104 |
video_input = gr.Video(label="Upload Video")
|
| 105 |
detect_input = gr.Textbox(
|
| 106 |
-
label="What to Detect",
|
| 107 |
-
placeholder="e.g. face, logo, text, person, car, dog, etc.",
|
| 108 |
value="face",
|
| 109 |
-
info="Moondream can detect
|
| 110 |
-
)
|
| 111 |
-
box_style_input = gr.Radio(
|
| 112 |
-
choices=['censor', 'bounding-box', 'hitmarker'],
|
| 113 |
-
value='censor',
|
| 114 |
-
label="Visualization Style",
|
| 115 |
-
info="Choose how to display detections"
|
| 116 |
-
)
|
| 117 |
-
preset_input = gr.Dropdown(
|
| 118 |
-
choices=['ultrafast', 'superfast', 'veryfast', 'faster', 'fast', 'medium', 'slow', 'slower', 'veryslow'],
|
| 119 |
-
value='medium',
|
| 120 |
-
label="Processing Speed (faster = lower quality)"
|
| 121 |
)
|
| 122 |
-
with gr.Row():
|
| 123 |
-
rows_input = gr.Slider(minimum=1, maximum=4, value=1, step=1, label="Grid Rows")
|
| 124 |
-
cols_input = gr.Slider(minimum=1, maximum=4, value=1, step=1, label="Grid Columns")
|
| 125 |
-
|
| 126 |
-
test_mode_input = gr.Checkbox(
|
| 127 |
-
label="Test Mode (Process first 3 seconds only)",
|
| 128 |
-
value=True,
|
| 129 |
-
info="Enable to quickly test settings on a short clip before processing the full video (recommended)"
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
process_btn = gr.Button("Process Video", variant="primary")
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
with gr.Column():
|
| 143 |
# Output components
|
| 144 |
video_output = gr.Video(label="Processed Video")
|
| 145 |
-
|
| 146 |
# About section under the video output
|
| 147 |
-
gr.Markdown(
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
It's designed to be lightweight and efficient while maintaining high accuracy. Some key features:
|
| 151 |
-
- Only 2B parameters
|
| 152 |
-
- Fast inference with minimal resource requirements
|
| 153 |
-
- Supports CPU and GPU execution
|
| 154 |
-
- Open source and free to use
|
| 155 |
-
|
| 156 |
-
Links:
|
| 157 |
- [GitHub Repository](https://github.com/vikhyat/moondream)
|
| 158 |
-
- [Hugging Face
|
| 159 |
- [Python Package](https://pypi.org/project/moondream/)
|
| 160 |
-
- [
|
| 161 |
-
"""
|
| 162 |
-
|
|
|
|
| 163 |
# Event handlers
|
| 164 |
process_btn.click(
|
| 165 |
fn=process_video_file,
|
| 166 |
-
inputs=[
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
)
|
| 169 |
|
| 170 |
if __name__ == "__main__":
|
| 171 |
-
app.launch(share=True)
|
|
|
|
| 20 |
print("Loading Moondream model...")
|
| 21 |
model, tokenizer = load_moondream()
|
| 22 |
|
| 23 |
+
|
| 24 |
# Uncomment for Hugging Face Spaces
|
| 25 |
@spaces.GPU(duration=120)
|
| 26 |
+
def process_video_file(
|
| 27 |
+
video_file, detect_keyword, box_style, ffmpeg_preset, rows, cols, test_mode
|
| 28 |
+
):
|
| 29 |
"""Process a video file through the Gradio interface."""
|
| 30 |
try:
|
| 31 |
if not video_file:
|
| 32 |
raise gr.Error("Please upload a video file")
|
| 33 |
+
|
| 34 |
# Ensure input/output directories exist using absolute paths
|
| 35 |
+
inputs_dir = os.path.join(WORKSPACE_ROOT, "inputs")
|
| 36 |
+
outputs_dir = os.path.join(WORKSPACE_ROOT, "outputs")
|
| 37 |
os.makedirs(inputs_dir, exist_ok=True)
|
| 38 |
os.makedirs(outputs_dir, exist_ok=True)
|
| 39 |
+
|
| 40 |
# Copy uploaded video to inputs directory
|
| 41 |
video_filename = f"input_{os.path.basename(video_file)}"
|
| 42 |
input_video_path = os.path.join(inputs_dir, video_filename)
|
| 43 |
shutil.copy2(video_file, input_video_path)
|
| 44 |
+
|
| 45 |
try:
|
| 46 |
# Process the video
|
| 47 |
output_path = process_video(
|
|
|
|
| 51 |
ffmpeg_preset=ffmpeg_preset,
|
| 52 |
rows=rows,
|
| 53 |
cols=cols,
|
| 54 |
+
box_style=box_style,
|
| 55 |
)
|
| 56 |
+
|
| 57 |
# Verify output exists and is readable
|
| 58 |
if not output_path or not os.path.exists(output_path):
|
| 59 |
print(f"Warning: Output path {output_path} does not exist")
|
| 60 |
# Try to find the output based on expected naming convention
|
| 61 |
+
expected_output = os.path.join(
|
| 62 |
+
outputs_dir, f"{box_style}_{detect_keyword}_{video_filename}"
|
| 63 |
+
)
|
| 64 |
if os.path.exists(expected_output):
|
| 65 |
output_path = expected_output
|
| 66 |
else:
|
| 67 |
# Try searching in outputs directory for any matching file
|
| 68 |
+
matching_files = [
|
| 69 |
+
f
|
| 70 |
+
for f in os.listdir(outputs_dir)
|
| 71 |
+
if f.startswith(f"{box_style}_{detect_keyword}_")
|
| 72 |
+
]
|
| 73 |
if matching_files:
|
| 74 |
output_path = os.path.join(outputs_dir, matching_files[0])
|
| 75 |
else:
|
| 76 |
raise gr.Error("Failed to locate output video")
|
| 77 |
+
|
| 78 |
# Convert output path to absolute path if it isn't already
|
| 79 |
if not os.path.isabs(output_path):
|
| 80 |
output_path = os.path.join(WORKSPACE_ROOT, output_path)
|
| 81 |
+
|
| 82 |
print(f"Returning output path: {output_path}")
|
| 83 |
return output_path
|
| 84 |
+
|
| 85 |
finally:
|
| 86 |
# Clean up input file
|
| 87 |
try:
|
|
|
|
| 89 |
os.remove(input_video_path)
|
| 90 |
except:
|
| 91 |
pass
|
| 92 |
+
|
| 93 |
except Exception as e:
|
| 94 |
print(f"Error in process_video_file: {str(e)}")
|
| 95 |
raise gr.Error(f"Error processing video: {str(e)}")
|
| 96 |
|
| 97 |
+
|
| 98 |
# Create the Gradio interface
|
| 99 |
with gr.Blocks(title="Promptable Video Redaction") as app:
|
| 100 |
gr.Markdown("# Promptable Video Redaction with Moondream")
|
| 101 |
+
gr.Markdown(
|
| 102 |
+
"""
|
| 103 |
+
[Moondream 2B](https://github.com/vikhyat/moondream) is a lightweight vision model that detects and visualizes objects in videos. It can identify objects, people, text and more.
|
| 104 |
+
|
| 105 |
+
Upload a video and specify what to detect. The app will process each frame and apply your chosen visualization style. For help, join the [Moondream Discord](https://discord.com/invite/tRUdpjDQfH).
|
| 106 |
+
"""
|
| 107 |
+
)
|
| 108 |
+
|
|
|
|
|
|
|
| 109 |
with gr.Row():
|
| 110 |
with gr.Column():
|
| 111 |
# Input components
|
| 112 |
video_input = gr.Video(label="Upload Video")
|
| 113 |
detect_input = gr.Textbox(
|
| 114 |
+
label="What to Detect",
|
| 115 |
+
placeholder="e.g. face, logo, text, person, car, dog, etc.",
|
| 116 |
value="face",
|
| 117 |
+
info="Moondream can detect anything that you can describe in natural language",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
process_btn = gr.Button("Process Video", variant="primary")
|
| 120 |
+
|
| 121 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 122 |
+
box_style_input = gr.Radio(
|
| 123 |
+
choices=["censor", "bounding-box", "hitmarker"],
|
| 124 |
+
value="censor",
|
| 125 |
+
label="Visualization Style",
|
| 126 |
+
info="Choose how to display detections",
|
| 127 |
+
)
|
| 128 |
+
preset_input = gr.Dropdown(
|
| 129 |
+
choices=[
|
| 130 |
+
"ultrafast",
|
| 131 |
+
"superfast",
|
| 132 |
+
"veryfast",
|
| 133 |
+
"faster",
|
| 134 |
+
"fast",
|
| 135 |
+
"medium",
|
| 136 |
+
"slow",
|
| 137 |
+
"slower",
|
| 138 |
+
"veryslow",
|
| 139 |
+
],
|
| 140 |
+
value="medium",
|
| 141 |
+
label="Processing Speed (faster = lower quality)",
|
| 142 |
+
)
|
| 143 |
+
with gr.Row():
|
| 144 |
+
rows_input = gr.Slider(
|
| 145 |
+
minimum=1, maximum=4, value=1, step=1, label="Grid Rows"
|
| 146 |
+
)
|
| 147 |
+
cols_input = gr.Slider(
|
| 148 |
+
minimum=1, maximum=4, value=1, step=1, label="Grid Columns"
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
test_mode_input = gr.Checkbox(
|
| 152 |
+
label="Test Mode (Process first 3 seconds only)",
|
| 153 |
+
value=True,
|
| 154 |
+
info="Enable to quickly test settings on a short clip before processing the full video (recommended)",
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
gr.Markdown(
|
| 158 |
+
"""
|
| 159 |
+
Note: Processing in test mode will only process the first 3 seconds of the video and is recommended for testing settings.
|
| 160 |
+
"""
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
gr.Markdown(
|
| 164 |
+
"""
|
| 165 |
+
We can get a rough estimate of how long the video will take to process by multiplying the videos framerate * seconds * the number of rows and columns and assuming 0.12 seconds processing time per detection.
|
| 166 |
+
For example, a 3 second video at 30fps with 2x2 grid, the estimated time is 3 * 30 * 2 * 2 * 0.12 = 43.2 seconds (tested on a 4090 GPU).
|
| 167 |
+
"""
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
with gr.Column():
|
| 171 |
# Output components
|
| 172 |
video_output = gr.Video(label="Processed Video")
|
| 173 |
+
|
| 174 |
# About section under the video output
|
| 175 |
+
gr.Markdown(
|
| 176 |
+
"""
|
| 177 |
+
### Links:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
- [GitHub Repository](https://github.com/vikhyat/moondream)
|
| 179 |
+
- [Hugging Face](https://huggingface.co/vikhyatk/moondream2)
|
| 180 |
- [Python Package](https://pypi.org/project/moondream/)
|
| 181 |
+
- [Moondream Recipes](https://docs.moondream.ai/recipes)
|
| 182 |
+
"""
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
# Event handlers
|
| 186 |
process_btn.click(
|
| 187 |
fn=process_video_file,
|
| 188 |
+
inputs=[
|
| 189 |
+
video_input,
|
| 190 |
+
detect_input,
|
| 191 |
+
box_style_input,
|
| 192 |
+
preset_input,
|
| 193 |
+
rows_input,
|
| 194 |
+
cols_input,
|
| 195 |
+
test_mode_input,
|
| 196 |
+
],
|
| 197 |
+
outputs=video_output,
|
| 198 |
)
|
| 199 |
|
| 200 |
if __name__ == "__main__":
|
| 201 |
+
app.launch(share=True)
|