File size: 8,810 Bytes
f1b856f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import os
import shutil
import subprocess
from pathlib import Path
from typing import Literal
import numpy as np
try:
from trackio.media.media import TrackioMedia
from trackio.media.utils import check_ffmpeg_installed, check_path
except ImportError:
from media.media import TrackioMedia
from media.utils import check_ffmpeg_installed, check_path
TrackioVideoSourceType = str | Path | np.ndarray
TrackioVideoFormatType = Literal["gif", "mp4", "webm"]
VideoCodec = Literal["h264", "vp9", "gif"]
class TrackioVideo(TrackioMedia):
"""
Initializes a Video object.
Example:
```python
import trackio
import numpy as np
# Create a simple video from numpy array
frames = np.random.randint(0, 255, (10, 3, 64, 64), dtype=np.uint8)
video = trackio.Video(frames, caption="Random video", fps=30)
# Create a batch of videos
batch_frames = np.random.randint(0, 255, (3, 10, 3, 64, 64), dtype=np.uint8)
batch_video = trackio.Video(batch_frames, caption="Batch of videos", fps=15)
# Create video from file path
video = trackio.Video("path/to/video.mp4", caption="Video from file")
```
Args:
value (`str`, `Path`, or `numpy.ndarray`, *optional*):
A path to a video file, or a numpy array.
If numpy array, should be of type `np.uint8` with RGB values in the range `[0, 255]`.
It is expected to have shape of either (frames, channels, height, width) or (batch, frames, channels, height, width).
For the latter, the videos will be tiled into a grid.
caption (`str`, *optional*):
A string caption for the video.
fps (`int`, *optional*):
Frames per second for the video. Only used when value is an ndarray. Default is `24`.
format (`Literal["gif", "mp4", "webm"]`, *optional*):
Video format ("gif", "mp4", or "webm"). Only used when value is an ndarray. Default is "gif".
"""
TYPE = "trackio.video"
def __init__(
self,
value: TrackioVideoSourceType,
caption: str | None = None,
fps: int | None = None,
format: TrackioVideoFormatType | None = None,
):
super().__init__(value, caption)
if not isinstance(self._value, TrackioVideoSourceType):
raise ValueError(
f"Invalid value type, expected {TrackioVideoSourceType}, got {type(self._value)}"
)
if isinstance(self._value, np.ndarray):
if self._value.dtype != np.uint8:
raise ValueError(
f"Invalid value dtype, expected np.uint8, got {self._value.dtype}"
)
if format is None:
format = "gif"
if fps is None:
fps = 24
self._fps = fps
self._format = format
@staticmethod
def _check_array_format(video: np.ndarray) -> None:
"""Raise an error if the array is not in the expected format."""
if not (video.ndim == 4 and video.shape[-1] == 3):
raise ValueError(
f"Expected RGB input shaped (F, H, W, 3), got {video.shape}. "
f"Input has {video.ndim} dimensions, expected 4."
)
if video.dtype != np.uint8:
raise TypeError(
f"Expected dtype=uint8, got {video.dtype}. "
"Please convert your video data to uint8 format."
)
@staticmethod
def write_video(
file_path: str | Path, video: np.ndarray, fps: float, codec: VideoCodec
) -> None:
"""RGB uint8 only, shape (F, H, W, 3)."""
check_ffmpeg_installed()
check_path(file_path)
if codec not in {"h264", "vp9", "gif"}:
raise ValueError("Unsupported codec. Use h264, vp9, or gif.")
arr = np.asarray(video)
TrackioVideo._check_array_format(arr)
frames = np.ascontiguousarray(arr)
_, height, width, _ = frames.shape
out_path = str(file_path)
cmd = [
"ffmpeg",
"-y",
"-f",
"rawvideo",
"-s",
f"{width}x{height}",
"-pix_fmt",
"rgb24",
"-r",
str(fps),
"-i",
"-",
"-an",
]
if codec == "gif":
video_filter = "split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse"
cmd += [
"-vf",
video_filter,
"-loop",
"0",
]
elif codec == "h264":
cmd += [
"-vcodec",
"libx264",
"-pix_fmt",
"yuv420p",
"-movflags",
"+faststart",
]
elif codec == "vp9":
bpp = 0.08
bps = int(width * height * fps * bpp)
if bps >= 1_000_000:
bitrate = f"{round(bps / 1_000_000)}M"
elif bps >= 1_000:
bitrate = f"{round(bps / 1_000)}k"
else:
bitrate = str(max(bps, 1))
cmd += [
"-vcodec",
"libvpx-vp9",
"-b:v",
bitrate,
"-pix_fmt",
"yuv420p",
]
cmd += [out_path]
proc = subprocess.Popen(cmd, stdin=subprocess.PIPE, stderr=subprocess.PIPE)
try:
for frame in frames:
proc.stdin.write(frame.tobytes())
finally:
if proc.stdin:
proc.stdin.close()
stderr = (
proc.stderr.read().decode("utf-8", errors="ignore")
if proc.stderr
else ""
)
ret = proc.wait()
if ret != 0:
raise RuntimeError(f"ffmpeg failed with code {ret}\n{stderr}")
@property
def _codec(self) -> str:
match self._format:
case "gif":
return "gif"
case "mp4":
return "h264"
case "webm":
return "vp9"
case _:
raise ValueError(f"Unsupported format: {self._format}")
def _save_media(self, file_path: Path):
if isinstance(self._value, np.ndarray):
video = TrackioVideo._process_ndarray(self._value)
TrackioVideo.write_video(file_path, video, fps=self._fps, codec=self._codec)
elif isinstance(self._value, str | Path):
if os.path.isfile(self._value):
shutil.copy(self._value, file_path)
else:
raise ValueError(f"File not found: {self._value}")
@staticmethod
def _process_ndarray(value: np.ndarray) -> np.ndarray:
# Verify value is either 4D (single video) or 5D array (batched videos).
# Expected format: (frames, channels, height, width) or (batch, frames, channels, height, width)
if value.ndim < 4:
raise ValueError(
"Video requires at least 4 dimensions (frames, channels, height, width)"
)
if value.ndim > 5:
raise ValueError(
"Videos can have at most 5 dimensions (batch, frames, channels, height, width)"
)
if value.ndim == 4:
# Reshape to 5D with single batch: (1, frames, channels, height, width)
value = value[np.newaxis, ...]
value = TrackioVideo._tile_batched_videos(value)
return value
@staticmethod
def _tile_batched_videos(video: np.ndarray) -> np.ndarray:
"""
Tiles a batch of videos into a grid of videos.
Input format: (batch, frames, channels, height, width) - original FCHW format
Output format: (frames, total_height, total_width, channels)
"""
batch_size, frames, channels, height, width = video.shape
next_pow2 = 1 << (batch_size - 1).bit_length()
if batch_size != next_pow2:
pad_len = next_pow2 - batch_size
pad_shape = (pad_len, frames, channels, height, width)
padding = np.zeros(pad_shape, dtype=video.dtype)
video = np.concatenate((video, padding), axis=0)
batch_size = next_pow2
n_rows = 1 << ((batch_size.bit_length() - 1) // 2)
n_cols = batch_size // n_rows
# Reshape to grid layout: (n_rows, n_cols, frames, channels, height, width)
video = video.reshape(n_rows, n_cols, frames, channels, height, width)
# Rearrange dimensions to (frames, total_height, total_width, channels)
video = video.transpose(2, 0, 4, 1, 5, 3)
video = video.reshape(frames, n_rows * height, n_cols * width, channels)
return video
|