import gradio as gr from googleapiclient.discovery import build import google.generativeai as genai import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import re import os import numpy as np import json import sqlite3 from datetime import datetime import hashlib import io import os from google.oauth2.credentials import Credentials from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from googleapiclient.discovery import build from googleapiclient.http import MediaIoBaseDownload, MediaIoBaseUpload GOOGLE_API_KEY = "AIzaSyASwqVh3ELFVKH-W3WuHtmjg3XgtwjJQKg" SEARCH_ENGINE_ID = "f34f8a4816771488b" GEMINI_API_KEY = "AIzaSyBXInbM_CAtquC9f80_DoAMQx6E2vE1lC8" MODEL_PATH = "./vietnamese_fake_news_model" genai.configure(api_key=GEMINI_API_KEY) # Knowledge Base Configuration KNOWLEDGE_BASE_DB = "knowledge_base.db" CONFIDENCE_THRESHOLD = 0.95 # 95% Gemini confidence threshold for RAG knowledge base ENABLE_KNOWLEDGE_BASE_SEARCH = True # Enable knowledge base search with training data # Enhanced RAG System Configuration ENABLE_ENHANCED_RAG = True # Enable enhanced RAG system for Google Drive RAG_CONFIDENCE_THRESHOLD = 0.95 # 95% threshold for saving to RAG # Cloud Storage Configuration USE_CLOUD_STORAGE = False # Disabled - using Enhanced RAG system instead (no duplicates) CLOUD_STORAGE_TYPE = "google_drive" # Options: "google_drive", "google_cloud", "local" GOOGLE_DRIVE_FILE_ID = None # Will be set when file is created # Load Google Drive file ID if it exists try: if os.path.exists('google_drive_file_id.txt'): with open('google_drive_file_id.txt', 'r') as f: GOOGLE_DRIVE_FILE_ID = f.read().strip() print(f"📁 Loaded Google Drive file ID: {GOOGLE_DRIVE_FILE_ID}") except Exception as e: print(f"Could not load Google Drive file ID: {e}") GOOGLE_CLOUD_BUCKET = "your-bucket-name" # For Google Cloud Storage print("Loading the DistilBERT model we trained...") try: if os.path.exists(MODEL_PATH): tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH) print("DistilBERT model loaded successfully!") else: print(f"Model directory '{MODEL_PATH}' not found!") print("Our custom model isn't available, trying a backup model...") try: tokenizer = AutoTokenizer.from_pretrained("distilbert-base-multilingual-cased") model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-multilingual-cased", num_labels=2) print("Fallback DistilBERT model loaded successfully!") except Exception as fallback_error: print(f"Fallback model also failed: {fallback_error}") tokenizer = None model = None except Exception as e: print(f"Error loading DistilBERT model: {e}") print("Something went wrong, trying the backup model...") try: tokenizer = AutoTokenizer.from_pretrained("distilbert-base-multilingual-cased") model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-multilingual-cased", num_labels=2) print("Fallback DistilBERT model loaded successfully!") except Exception as fallback_error: print(f"Fallback model also failed: {fallback_error}") tokenizer = None model = None # --- CLOUD STORAGE FUNCTIONS --- def get_google_drive_service(): """Get authenticated Google Drive service for Hugging Face Spaces""" try: SCOPES = ['https://www.googleapis.com/auth/drive.file'] creds = None # Check if running on Hugging Face Spaces import os is_hf_space = os.getenv('SPACE_ID') is not None if is_hf_space: # For Hugging Face Spaces, use environment variables client_id = os.getenv('GOOGLE_CLIENT_ID') client_secret = os.getenv('GOOGLE_CLIENT_SECRET') refresh_token = os.getenv('GOOGLE_REFRESH_TOKEN') if client_id and client_secret and refresh_token: creds = Credentials.from_authorized_user_info({ 'client_id': client_id, 'client_secret': client_secret, 'refresh_token': refresh_token, 'token_uri': 'https://oauth2.googleapis.com/token' }, SCOPES) else: print("⚠️ Google Drive credentials not found in Hugging Face secrets") return None else: # For local development, use files if os.path.exists('token.json'): creds = Credentials.from_authorized_user_file('token.json', SCOPES) # If no valid credentials, request authorization if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: if os.path.exists('credentials.json'): flow = InstalledAppFlow.from_client_secrets_file( 'credentials.json', SCOPES) creds = flow.run_local_server(port=0) else: print("⚠️ credentials.json not found for local development") return None # Save credentials for next run with open('token.json', 'w') as token: token.write(creds.to_json()) return build('drive', 'v3', credentials=creds) except Exception as e: print(f"Error setting up Google Drive: {e}") return None def upload_to_google_drive(data, filename="knowledge_base.json"): """Upload knowledge base data to Google Drive""" try: service = get_google_drive_service() if not service: return None # Convert data to JSON json_data = json.dumps(data, ensure_ascii=False, indent=2) file_metadata = { 'name': filename, 'parents': [] # Root folder } media = MediaIoBaseUpload( io.BytesIO(json_data.encode('utf-8')), mimetype='application/json' ) file = service.files().create( body=file_metadata, media_body=media, fields='id' ).execute() print(f"✅ Uploaded {filename} to Google Drive (ID: {file.get('id')})") return file.get('id') except Exception as e: print(f"Error uploading to Google Drive: {e}") return None def download_from_google_drive(file_id): """Download knowledge base data from Google Drive""" try: service = get_google_drive_service() if not service: return [] request = service.files().get_media(fileId=file_id) file_content = io.BytesIO() downloader = MediaIoBaseDownload(file_content, request) done = False while done is False: status, done = downloader.next_chunk() file_content.seek(0) data = json.loads(file_content.read().decode('utf-8')) print(f"✅ Downloaded knowledge base from Google Drive") return data except Exception as e: print(f"Error downloading from Google Drive: {e}") return [] def save_knowledge_base_cloud(data): """Save knowledge base to cloud storage""" if CLOUD_STORAGE_TYPE == "google_drive": file_id = upload_to_google_drive(data) if file_id: global GOOGLE_DRIVE_FILE_ID GOOGLE_DRIVE_FILE_ID = file_id return file_id is not None elif CLOUD_STORAGE_TYPE == "google_cloud": # TODO: Implement Google Cloud Storage print("Google Cloud Storage not implemented yet") return False return False def load_knowledge_base_cloud(): """Load knowledge base from cloud storage""" if CLOUD_STORAGE_TYPE == "google_drive" and GOOGLE_DRIVE_FILE_ID: return download_from_google_drive(GOOGLE_DRIVE_FILE_ID) elif CLOUD_STORAGE_TYPE == "google_cloud": # TODO: Implement Google Cloud Storage print("Google Cloud Storage not implemented yet") return [] return [] # --- KNOWLEDGE BASE MANAGEMENT --- def init_knowledge_base(): """Initialize the SQLite knowledge base""" conn = sqlite3.connect(KNOWLEDGE_BASE_DB) cursor = conn.cursor() cursor.execute(''' CREATE TABLE IF NOT EXISTS knowledge_entries ( id INTEGER PRIMARY KEY AUTOINCREMENT, content_hash TEXT UNIQUE, news_text TEXT, prediction TEXT, confidence REAL, search_results TEXT, gemini_analysis TEXT, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, last_accessed TIMESTAMP DEFAULT CURRENT_TIMESTAMP, access_count INTEGER DEFAULT 1 ) ''') conn.commit() conn.close() print("Knowledge base initialized successfully!") def add_to_knowledge_base(news_text, prediction, confidence, search_results, gemini_analysis): """Add high-confidence result to knowledge base""" try: # Create content hash for deduplication content_hash = hashlib.md5(news_text.encode('utf-8')).hexdigest() if USE_CLOUD_STORAGE: # Add to cloud storage data = load_knowledge_base_cloud() # Check if entry already exists for entry in data: if entry.get('content_hash') == content_hash: print(f"Entry already exists in cloud knowledge base (hash: {content_hash[:8]}...)") return False # Create new entry new_entry = { 'content_hash': content_hash, 'news_text': news_text, 'prediction': prediction, 'confidence': confidence, 'search_results': search_results, 'gemini_analysis': gemini_analysis, 'created_at': datetime.now().isoformat(), 'last_accessed': datetime.now().isoformat(), 'access_count': 1 } # Add to data and save to cloud data.append(new_entry) success = save_knowledge_base_cloud(data) if success: print(f"✅ Added high-confidence result to cloud knowledge base (confidence: {confidence:.1%})") print(f" Hash: {content_hash[:8]}...") print(f" Prediction: {prediction}") return True else: return False else: # Add to local SQLite database conn = sqlite3.connect(KNOWLEDGE_BASE_DB) cursor = conn.cursor() # Check if entry already exists cursor.execute('SELECT id FROM knowledge_entries WHERE content_hash = ?', (content_hash,)) if cursor.fetchone(): print(f"Entry already exists in knowledge base (hash: {content_hash[:8]}...)") conn.close() return False # Insert new entry cursor.execute(''' INSERT INTO knowledge_entries (content_hash, news_text, prediction, confidence, search_results, gemini_analysis) VALUES (?, ?, ?, ?, ?, ?) ''', ( content_hash, news_text, prediction, confidence, json.dumps(search_results, ensure_ascii=False), gemini_analysis )) conn.commit() conn.close() print(f"✅ Added high-confidence result to knowledge base (confidence: {confidence:.1%})") print(f" Hash: {content_hash[:8]}...") print(f" Prediction: {prediction}") return True except Exception as e: print(f"Error adding to knowledge base: {e}") return False def search_knowledge_base(query_text, limit=5): """Search the knowledge base for similar entries""" try: if USE_CLOUD_STORAGE: # Search in cloud storage data = load_knowledge_base_cloud() if not data: return [] # Simple text similarity search in JSON data results = [] query_lower = query_text[:50].lower() for entry in data: if (query_lower in entry.get('news_text', '').lower() or query_lower in entry.get('gemini_analysis', '').lower()): results.append(( entry['news_text'], entry['prediction'], entry['confidence'], entry.get('search_results', []), entry.get('gemini_analysis', ''), entry.get('created_at', ''), entry.get('access_count', 1) )) # Sort by confidence and access count results.sort(key=lambda x: (x[2], x[6]), reverse=True) results = results[:limit] if results: print(f"📚 Found {len(results)} similar entries in cloud knowledge base") return results else: return [] else: # Search in local SQLite database conn = sqlite3.connect(KNOWLEDGE_BASE_DB) cursor = conn.cursor() # Simple text similarity search (you can enhance this with embeddings later) cursor.execute(''' SELECT news_text, prediction, confidence, search_results, gemini_analysis, created_at, access_count FROM knowledge_entries WHERE news_text LIKE ? OR gemini_analysis LIKE ? ORDER BY confidence DESC, access_count DESC LIMIT ? ''', (f'%{query_text[:50]}%', f'%{query_text[:50]}%', limit)) results = cursor.fetchall() # Update access count and last_accessed for result in results: cursor.execute(''' UPDATE knowledge_entries SET access_count = access_count + 1, last_accessed = CURRENT_TIMESTAMP WHERE news_text = ? ''', (result[0],)) conn.commit() conn.close() if results: print(f"📚 Found {len(results)} similar entries in knowledge base") return results else: return [] except Exception as e: print(f"Error searching knowledge base: {e}") return [] def format_knowledge_for_rag(knowledge_results): """Format knowledge base results for RAG augmentation""" if not knowledge_results: return "" knowledge_summary = "\n=== KIẾN THỨC TƯƠNG TỰ TỪ CƠ SỞ DỮ LIỆU ===\n" for i, (news_text, prediction, confidence, search_results, gemini_analysis, created_at, access_count) in enumerate(knowledge_results, 1): knowledge_summary += f"\n{i}. Tin tức tương tự (Độ tin cậy: {confidence:.1%}, Lần truy cập: {access_count}):\n" knowledge_summary += f" Nội dung: {news_text[:200]}...\n" knowledge_summary += f" Kết luận: {prediction}\n" knowledge_summary += f" Thời gian: {created_at}\n" knowledge_summary += "\n==========================================\n" return knowledge_summary def get_knowledge_base_stats(): """Get statistics about the knowledge base""" try: conn = sqlite3.connect(KNOWLEDGE_BASE_DB) cursor = conn.cursor() # Get total entries cursor.execute('SELECT COUNT(*) FROM knowledge_entries') total_entries = cursor.fetchone()[0] # Get entries by prediction cursor.execute('SELECT prediction, COUNT(*) FROM knowledge_entries GROUP BY prediction') prediction_counts = dict(cursor.fetchall()) # Get average confidence cursor.execute('SELECT AVG(confidence) FROM knowledge_entries') avg_confidence = cursor.fetchone()[0] or 0 # Get most accessed entries cursor.execute('SELECT news_text, access_count FROM knowledge_entries ORDER BY access_count DESC LIMIT 3') top_accessed = cursor.fetchall() conn.close() return { 'total_entries': total_entries, 'prediction_counts': prediction_counts, 'avg_confidence': avg_confidence, 'top_accessed': top_accessed } except Exception as e: print(f"Error getting knowledge base stats: {e}") return None # Initialize knowledge base on startup init_knowledge_base() # Initialize Enhanced RAG System if ENABLE_ENHANCED_RAG: try: from rag_news_manager import initialize_rag_system print("🚀 Initializing Enhanced RAG System...") if initialize_rag_system(): print("✅ Enhanced RAG System initialized successfully!") else: print("⚠️ Enhanced RAG System initialization failed") print(" 📋 This usually means Google Drive authentication needs to be refreshed") print(" 🔧 To fix this, run: python setup_google_drive_rag.py") print(" 📝 Or check if credentials.json and token.json are valid") print(" ⚠️ System will continue, but high-confidence news won't be saved to Google Drive") # Don't disable - allow retry during runtime # ENABLE_ENHANCED_RAG = False except ImportError as e: print(f"⚠️ Enhanced RAG System not available: {e}") print(" 📋 Make sure rag_news_manager.py is in the same directory") # Don't disable - maybe module will be available later # ENABLE_ENHANCED_RAG = False except Exception as e: print(f"⚠️ Enhanced RAG System initialization error: {e}") error_msg = str(e).lower() if "invalid_grant" in error_msg or "bad request" in error_msg: print(" 🔑 Google Drive token expired or invalid") print(" 🔧 To fix: Run 'python setup_google_drive_rag.py' to re-authenticate") elif "credentials" in error_msg: print(" 🔑 Google Drive credentials issue") print(" 🔧 To fix: Make sure credentials.json exists and is valid") print(" ⚠️ System will continue, but RAG saving may not work until fixed") # Don't disable - allow retry during runtime # ENABLE_ENHANCED_RAG = False def populate_knowledge_base_from_training_data(): """Populate knowledge base with existing training data""" try: import pandas as pd # Load training data df = pd.read_csv('train_final.csv') print(f"📚 Loading {len(df)} training samples into knowledge base...") conn = sqlite3.connect(KNOWLEDGE_BASE_DB) cursor = conn.cursor() added_count = 0 skipped_count = 0 for index, row in df.iterrows(): news_text = str(row['content']) label = int(row['label']) prediction = "REAL" if label == 0 else "FAKE" # Create content hash for deduplication content_hash = hashlib.md5(news_text.encode('utf-8')).hexdigest() # Check if entry already exists cursor.execute('SELECT id FROM knowledge_entries WHERE content_hash = ?', (content_hash,)) if cursor.fetchone(): skipped_count += 1 continue # Create synthetic analysis for training data synthetic_analysis = f"""1. KẾT LUẬN: {prediction} 2. ĐỘ TIN CẬY: THẬT: {95 if prediction == 'REAL' else 5}% / GIẢ: {5 if prediction == 'REAL' else 95}% 3. PHÂN TÍCH CHI TIẾT: - Nội dung: {'Tin tức được xác minh từ nguồn đào tạo' if prediction == 'REAL' else 'Tin tức giả được xác định từ nguồn đào tạo'} - Nguồn tin: Dữ liệu huấn luyện đã được xác minh - Ngữ cảnh: Mẫu từ bộ dữ liệu huấn luyện DistilBERT - Ngôn ngữ: {'Ngôn ngữ khách quan, tin cậy' if prediction == 'REAL' else 'Ngôn ngữ có dấu hiệu tin giả'} - Thời gian: Dữ liệu huấn luyện đã được kiểm chứng 4. CÁC DẤU HIỆU CẢNH BÁO: {'Không có dấu hiệu cảnh báo' if prediction == 'REAL' else 'Tin tức được xác định là giả từ nguồn đào tạo'} 5. KHUYẾN NGHỊ CHO NGƯỜI ĐỌC: - Nguồn: Dữ liệu huấn luyện đã được xác minh - Độ tin cậy: Cao (từ bộ dữ liệu đào tạo) - Lưu ý: Mẫu từ tập huấn luyện DistilBERT""" # Insert training sample cursor.execute(''' INSERT INTO knowledge_entries (content_hash, news_text, prediction, confidence, search_results, gemini_analysis) VALUES (?, ?, ?, ?, ?, ?) ''', ( content_hash, news_text, prediction, 0.95, # High confidence for training data json.dumps([], ensure_ascii=False), # Empty search results for training data synthetic_analysis )) added_count += 1 # Show progress every 1000 entries if added_count % 1000 == 0: print(f" Added {added_count} entries...") conn.commit() conn.close() print(f"✅ Knowledge base populated successfully!") print(f" 📊 Added: {added_count} entries") print(f" ⏭️ Skipped: {skipped_count} duplicates") print(f" 🎯 Total entries: {added_count}") return True except FileNotFoundError as e: print(f"⚠️ Training data file not found: {e}") print(" Knowledge base will start empty (this is OK)") return False except Exception as e: print(f"⚠️ Error populating knowledge base: {e}") print(" Knowledge base will start empty (this is OK)") return False # Populate knowledge base with training data on startup (optional) print("🚀 Populating knowledge base with training data...") populate_knowledge_base_from_training_data() CREDIBLE_SOURCES = { # Báo tổng hợp & phổ biến 'vnexpress.net': 0.95, 'tuoitre.vn': 0.95, 'thanhnien.vn': 0.90, 'dantri.com.vn': 0.90, 'vietnamnet.vn': 0.80, 'zing.vn': 0.85, 'zingnews.vn': 0.85, 'nld.com.vn': 0.90, 'laodong.vn': 0.90, 'kenh14.vn': 0.80, 'soha.vn': 0.80, 'baotintuc.vn': 0.85, # Báo chính trị - xã hội & nhà nước 'nhandan.vn': 0.90, 'qdnd.vn': 0.90, 'cand.com.vn': 0.95, 'congan.com.vn': 0.95, 'baochinhphu.vn': 0.95, 'vnanet.vn': 0.90, 'quochoi.vn': 0.95, 'chinhphu.vn': 0.95, # Kinh tế, tài chính, đầu tư, công nghệ 'cafef.vn': 0.85, 'vietnamfinance.vn': 0.85, 'baodautu.vn': 0.85, 'ictnews.vietnamnet.vn': 0.85, # Giáo dục - Văn hóa - Khoa học 'giaoducthoidai.vn': 0.90, 'vov.vn': 0.90, 'toquoc.vn': 0.90, # Cổng thông tin các bộ ngành 'moh.gov.vn': 0.95, # Bộ Y tế 'mofa.gov.vn': 0.95, # Bộ Ngoại giao 'mard.gov.vn': 0.95, # Bộ NN&PTNT 'moc.gov.vn': 0.95, # Bộ Xây dựng 'mof.gov.vn': 0.95, # Bộ Tài chính 'most.gov.vn': 0.95, # Bộ KH&CN (đúng domain là most.gov.vn, không phải mst) # Quốc tế & tham khảo 'wikipedia.org': 0.95, 'fifa.com': 0.95, } def clean_text(text): """Clean up the text before feeding it to our model""" if not isinstance(text, str): text = str(text) text = re.sub(r'\s+', ' ', text.strip()) if len(text) < 10: text = "Tin tức ngắn: " + text return text def predict_with_distilbert(text): """Run the text through our trained DistilBERT model to get a prediction""" if model is None or tokenizer is None: return None, None, None, None try: clean_text_input = clean_text(text) inputs = tokenizer( clean_text_input, return_tensors="pt", truncation=True, padding=True, max_length=512 ) with torch.no_grad(): outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) real_score = predictions[0][0].item() fake_score = predictions[0][1].item() if real_score > fake_score: prediction = "REAL" confidence = real_score else: prediction = "FAKE" confidence = fake_score return prediction, confidence, real_score, fake_score except Exception as e: print(f"DistilBERT prediction error: {e}") return None, None, None, None def process_search_results(items): search_results = [] for item in items: search_results.append({ 'title': item.get('title', ''), 'snippet': item.get('snippet', ''), 'link': item.get('link', '') }) return search_results def google_search_fallback(news_text): print("Google Search is unavailable - using enhanced content analysis") # Enhanced content analysis without external search fake_indicators = ['giả', 'sai', 'không đúng', 'bịa đặt', 'lừa đảo', 'fake news', 'tin đồn', 'nghi vấn'] real_indicators = ['chính thức', 'xác nhận', 'chính xác', 'đúng', 'verified', 'chính phủ', 'bộ y tế', 'cơ quan'] text_lower = news_text.lower() fake_count = sum(1 for word in fake_indicators if word in text_lower) real_count = sum(1 for word in real_indicators if word in text_lower) # Create more detailed analysis analysis_details = [] if fake_count > real_count: analysis_details.append("Nhiều từ khóa nghi ngờ được sử dụng") elif real_count > fake_count: analysis_details.append("Có từ khóa xác thực từ nguồn chính thức") # Check for other patterns if len(news_text) < 100: analysis_details.append("Tin tức quá ngắn, thiếu thông tin chi tiết") if '!' in news_text or '!!!' in news_text: analysis_details.append("Sử dụng dấu chấm than thái quá") snippet = f"Phân tích nội dung: {fake_count} từ nghi ngờ, {real_count} từ xác thực. " snippet += "; ".join(analysis_details) if analysis_details else "Không phát hiện dấu hiệu đặc biệt" return [{ 'title': 'Phân tích nội dung chi tiết (không có tìm kiếm Google)', 'snippet': snippet, 'link': 'content-analysis-only' }] def google_search(news_text): """Search Google for information about the news - general search without prioritizing specific sites""" try: service = build("customsearch", "v1", developerKey=GOOGLE_API_KEY) # Extract keywords from news text - improved for Vietnamese # Split into words (not individual characters) words = news_text.split() # Filter out very short words and keep important ones important_words = [w for w in words if len(w) > 2][:10] # Top 10 important words # Create search query from the text main_query = ' '.join(important_words) # Also try with the first 100 characters as exact phrase short_query = news_text[:100].strip() print(f"📝 News text preview: {news_text[:100]}...") # Prepare search queries search_queries = [] if short_query: search_queries.append(f'"{short_query}"') # Exact phrase search if main_query: search_queries.append(main_query) # Keyword search print(f"🔍 Search queries prepared: {len(search_queries)}") for idx, q in enumerate(search_queries, 1): print(f" Query {idx}: {q[:80]}...") all_results = [] for i, search_query in enumerate(search_queries): if not search_query.strip(): continue print(f"🔍 Search {i+1}: '{search_query[:80]}...'") try: # Request 10 results per query result = service.cse().list( q=search_query, cx=SEARCH_ENGINE_ID, num=10 ).execute() if 'items' in result and result['items']: all_results.extend(result['items']) print(f"✅ Found {len(result['items'])} results (total: {len(all_results)})") # If we have enough results, stop searching if len(all_results) >= 15: # Get a bit more for diversity filtering break except Exception as e: print(f"Search error: {e}") continue if all_results: # Filter for diversity - max 2 results per domain diverse_results = [] domain_count = {} for item in all_results: # Extract domain from URL url = item.get('link', '') domain = url.split('/')[2] if len(url.split('/')) > 2 else url # Count results per domain if domain not in domain_count: domain_count[domain] = 0 # Only add if we have less than 2 from this domain if domain_count[domain] < 2: diverse_results.append(item) domain_count[domain] += 1 # Stop when we have 10 diverse results if len(diverse_results) >= 10: break print(f"✅ Returning {len(diverse_results)} diverse results from {len(domain_count)} domains") return process_search_results(diverse_results) print("No results found, using fallback...") return google_search_fallback(news_text) except Exception as e: print(f"Google Search error: {e}") print(f"Error type: {type(e).__name__}") error_str = str(e).lower() if any(keyword in error_str for keyword in ["403", "blocked", "quota", "limit", "exceeded"]): print("Google Search API blocked/quota exceeded, using fallback...") # Return error information along with fallback results fallback_results = google_search_fallback(news_text) return { 'results': fallback_results, 'error': 'QUOTA_EXCEEDED', 'error_message': 'Google Search API quota exceeded. Using content analysis only.', 'error_details': str(e) } elif "invalid" in error_str or "unauthorized" in error_str: print("API key issue, using fallback...") fallback_results = google_search_fallback(news_text) return { 'results': fallback_results, 'error': 'API_KEY_INVALID', 'error_message': 'Google Search API key invalid. Using content analysis only.', 'error_details': str(e) } else: print("Unknown Google Search error, using fallback...") fallback_results = google_search_fallback(news_text) return { 'results': fallback_results, 'error': 'UNKNOWN_ERROR', 'error_message': 'Google Search failed. Using content analysis only.', 'error_details': str(e) } def analyze_sources(search_results): """Check how trustworthy the news sources are - using AVERAGE credibility""" if not search_results: return 0.50, 0.20, "No sources found", [] credible_count = 0 total_sources = len(search_results) found_sources = [] credible_sources_found = [] credibility_scores = [] # Track individual credibility scores for result in search_results: domain = result['link'].split('/')[2] if '//' in result['link'] else '' found_sources.append(domain) # Check if this domain matches any credible source found_credible = False for source, credibility in CREDIBLE_SOURCES.items(): if source in domain: credible_count += 1 credible_sources_found.append(f"{source} ({credibility:.0%})") credibility_scores.append(credibility) # Add actual credibility score found_credible = True break # If not credible, assign 50% (0.50) if not found_credible: credibility_scores.append(0.50) # Calculate AVERAGE credibility of all sources (credible sites keep their %, non-credible = 50%) source_credibility = sum(credibility_scores) / len(credibility_scores) if credibility_scores else 0.50 print(f"📊 Source Credibility Calculation:") print(f" Total sources: {total_sources}") print(f" Credible sources: {credible_count}") print(f" Non-credible sources: {total_sources - credible_count} (each counts as 50%)") print(f" Individual scores: {[f'{s:.0%}' for s in credibility_scores]}") print(f" Average credibility: {source_credibility:.1%}") popularity_score = min(1.0, total_sources / 5.0) # Normalize to 0-1 # Create a summary of what we found if source_credibility > 0.7: credibility_text = f"High credibility: {credible_count}/{total_sources} sources from reputable outlets (avg: {source_credibility:.0%})" elif source_credibility > 0.4: credibility_text = f"Medium credibility: {credible_count}/{total_sources} sources from reputable outlets (avg: {source_credibility:.0%})" else: credibility_text = f"Low credibility: {credible_count}/{total_sources} sources from reputable outlets (avg: {source_credibility:.0%})" return source_credibility, popularity_score, credibility_text, found_sources, credible_sources_found def analyze_source_support(news_text, search_results): """Check if the search results agree or disagree with the news""" if not search_results: return 0.5, "No sources to analyze" support_count = 0 contradict_count = 0 total_sources = len(search_results) # Look for years mentioned in the news import re news_years = re.findall(r'\b(20\d{2})\b', news_text) news_year = news_years[0] if news_years else None for result in search_results: title_snippet = (result.get('title', '') + ' ' + result.get('snippet', '')).lower() # See if the years match up if news_year: source_years = re.findall(r'\b(20\d{2})\b', title_snippet) if source_years and news_year not in source_years: contradict_count += 1 continue # Look for words that suggest agreement or disagreement support_keywords = ['confirm', 'verify', 'true', 'accurate', 'correct', 'xác nhận', 'chính xác', 'đúng'] contradict_keywords = ['false', 'fake', 'incorrect', 'wrong', 'sai', 'giả', 'không đúng'] support_score = sum(1 for keyword in support_keywords if keyword in title_snippet) contradict_score = sum(1 for keyword in contradict_keywords if keyword in title_snippet) if contradict_score > support_score: contradict_count += 1 elif support_score > contradict_score: support_count += 1 else: # If unclear, assume slight support support_count += 0.5 support_ratio = support_count / total_sources if total_sources > 0 else 0.5 if support_ratio > 0.7: support_text = f"Sources strongly support the news: {support_count:.1f}/{total_sources} sources confirm" elif support_ratio > 0.4: support_text = f"Sources mixed: {support_count:.1f}/{total_sources} sources support, {contradict_count} contradict" else: support_text = f"Sources contradict the news: {contradict_count}/{total_sources} sources contradict" return support_ratio, support_text def analyze_with_gemini(news_text, search_results, distilbert_prediction, distilbert_confidence): """Use Gemini AI to analyze the news and compare with our model results""" try: # Knowledge base search with training data if ENABLE_KNOWLEDGE_BASE_SEARCH: print("🔍 Searching knowledge base for similar entries...") knowledge_results = search_knowledge_base(news_text, limit=2) # Reduced to 2 for speed knowledge_context = format_knowledge_for_rag(knowledge_results) else: knowledge_context = "" # Try to use the latest Gemini model available try: model = genai.GenerativeModel('gemini-2.0-flash-exp') except: try: model = genai.GenerativeModel('gemini-2.5-flash') except: try: model = genai.GenerativeModel('gemini-1.5-pro') except: model = genai.GenerativeModel('gemini-1.5-flash') # Format the search results for Gemini (limit to top 3 for speed) search_summary = "" if search_results: search_summary = "Kết quả tìm kiếm Google:\n" for i, result in enumerate(search_results[:3], 1): # Reduced from 5 to 3 search_summary += f"{i}. {result['title']}\n {result['snippet']}\n Nguồn: {result['link']}\n\n" else: search_summary = "Không tìm thấy kết quả tìm kiếm Google cho tin tức này. Điều này có thể do API bị giới hạn hoặc tin tức quá mới/chưa được đăng tải." # Note: We're not including DistilBERT results to keep Gemini analysis independent prompt = f""" Bạn là một chuyên gia phân tích tin tức chuyên nghiệp. Hãy phân tích chi tiết tin tức sau và đánh giá độ tin cậy của nó: "{news_text}" {search_summary} {knowledge_context} Hãy thực hiện phân tích toàn diện theo các tiêu chí sau: 1. Phân tích nội dung: Kiểm tra tính logic, mâu thuẫn, ngôn ngữ cảm xúc thái quá 2. Phân tích nguồn tin: Đánh giá uy tín và độ tin cậy của nguồn 3. Phân tích ngữ cảnh: So sánh với thông tin có sẵn và kiến thức thực tế 4. Phân tích ngôn ngữ: Tìm dấu hiệu của tin giả như từ ngữ gây sốc, cảm xúc 5. Phân tích thời gian: Kiểm tra tính hợp lý về mặt thời gian Trả lời theo định dạng sau (chỉ bằng tiếng Việt, viết chi tiết và chuyên nghiệp): 1. KẾT LUẬN: [THẬT/GIẢ/KHÔNG XÁC ĐỊNH] 2. ĐỘ TIN CẬY: [THẬT: X% / GIẢ: Y%] (Trong đó X% là độ tin cậy tin THẬT, Y% là độ tin cậy tin GIẢ, X+Y=100%) 3. PHÂN TÍCH CHI TIẾT: - Nội dung: [Phân tích chi tiết về nội dung tin tức] - Nguồn tin: [Đánh giá về nguồn và độ tin cậy] - Ngữ cảnh: [So sánh với thông tin có sẵn] - Ngôn ngữ: [Phân tích cách sử dụng từ ngữ] - Thời gian: [Kiểm tra tính hợp lý về mặt thời gian] 4. CÁC DẤU HIỆU CẢNH BÁO: [Liệt kê các dấu hiệu đáng ngờ nếu có] 5. KHUYẾN NGHỊ CHO NGƯỜI ĐỌC: - [Hướng dẫn cụ thể để kiểm chứng thông tin] - [Các nguồn tin đáng tin cậy để tham khảo] - [Cách phân biệt tin thật và tin giả] QUAN TRỌNG: Trong phần "ĐỘ TIN CẬY", hãy cung cấp tỷ lệ phần trăm chính xác dựa trên phân tích của bạn. Ví dụ: "THẬT: 95% / GIẢ: 5%" nghĩa là 95% tin tức này là THẬT, 5% là GIẢ. Viết chi tiết, chuyên nghiệp và hữu ích cho người đọc. """ print("Calling Gemini API...") print(f"DEBUG - News text being analyzed: {news_text}") print(f"DEBUG - Search results count: {len(search_results)}") if search_results: print(f"DEBUG - First search result title: {search_results[0].get('title', 'No title')}") # Use settings optimized for faster processing generation_config = genai.types.GenerationConfig( temperature=0.3, # Lower for more consistent results top_p=0.8, # Reduced for faster processing top_k=20, # Reduced for faster processing max_output_tokens=1000 # Reduced for faster responses ) response = model.generate_content(prompt, generation_config=generation_config) print("Gemini API response received successfully") return response.text except Exception as e: print(f"Gemini analysis error: {e}") print(f"Error type: {type(e).__name__}") # If we hit the API limit, provide a basic analysis if "429" in str(e) or "quota" in str(e).lower(): print("Gemini API quota exceeded, providing enhanced fallback analysis...") # Enhanced analysis based on content patterns fake_patterns = ['giả', 'sai', 'không đúng', 'bịa đặt', 'lừa đảo', 'fake news', 'tin đồn'] real_patterns = ['chính thức', 'xác nhận', 'chính xác', 'đúng', 'verified', 'chính phủ', 'bộ y tế'] news_lower = news_text.lower() fake_score = sum(1 for pattern in fake_patterns if pattern in news_lower) real_score = sum(1 for pattern in real_patterns if pattern in news_lower) # Adjust prediction based on patterns if fake_score > real_score and distilbert_prediction == 'FAKE': confidence_boost = "Cao (có từ khóa nghi ngờ)" elif real_score > fake_score and distilbert_prediction == 'REAL': confidence_boost = "Cao (có từ khóa xác thực)" else: confidence_boost = "Trung bình" # Create detailed fallback analysis conclusion = 'THẬT' if distilbert_prediction == 'REAL' else 'GIẢ' if distilbert_prediction == 'FAKE' else 'KHÔNG XÁC ĐỊNH' # Enhanced analysis based on content patterns suspicious_patterns = [] if fake_score > 0: suspicious_patterns.append(f"Tìm thấy {fake_score} từ khóa nghi ngờ") if real_score > 0: suspicious_patterns.append(f"Tìm thấy {real_score} từ khóa xác thực") warning_signs = [] if 'cảnh báo' in news_lower or 'nguy hiểm' in news_lower: warning_signs.append("Sử dụng từ ngữ gây sợ hãi") if 'ngay lập tức' in news_lower or 'khẩn cấp' in news_lower: warning_signs.append("Tạo cảm giác cấp bách không cần thiết") if len(news_text) < 100: warning_signs.append("Tin tức quá ngắn, thiếu thông tin chi tiết") fallback_analysis = f"""1. KẾT LUẬN: {conclusion} 2. ĐỘ TIN CẬY: {'THẬT: 5% / GIẢ: 95%' if conclusion == 'GIẢ' else 'THẬT: 95% / GIẢ: 5%' if conclusion == 'THẬT' else 'THẬT: 50% / GIẢ: 50%'} 3. PHÂN TÍCH CHI TIẾT: - Nội dung: {'Tin tức có vẻ hợp lý' if distilbert_prediction == 'REAL' else 'Tin tức có nhiều dấu hiệu đáng ngờ' if distilbert_prediction == 'FAKE' else 'Nội dung không rõ ràng'} - Nguồn tin: Google Search không khả dụng (hết quota) - không thể kiểm tra nguồn - Ngữ cảnh: Phân tích từ khóa: {confidence_boost} - Ngôn ngữ: {'Ngôn ngữ trung tính' if fake_score == real_score else 'Có dấu hiệu cảm xúc thái quá' if fake_score > real_score else 'Ngôn ngữ khách quan'} - Thời gian: Không thể xác minh do thiếu thông tin bổ sung 4. CÁC DẤU HIỆU CẢNH BÁO: {chr(10).join([f"- {sign}" for sign in warning_signs]) if warning_signs else "- Không phát hiện dấu hiệu cảnh báo rõ ràng"} 5. KHUYẾN NGHỊ CHO NGƯỜI ĐỌC: - Kiểm tra nguồn: Tìm kiếm thông tin tương tự trên các trang báo uy tín như VnExpress, Tuổi Trẻ, Thanh Niên - Xác minh thời gian: Kiểm tra xem tin tức có được đăng tải đồng thời trên nhiều nguồn không - Đánh giá ngôn ngữ: Tránh chia sẻ tin tức có ngôn ngữ cảm xúc thái quá hoặc tạo cảm giác cấp bách - Lưu ý: Do hệ thống API tạm thời không khả dụng, kết quả phân tích có thể không hoàn toàn chính xác""" return fallback_analysis # For other errors, see what models are available try: models = genai.list_models() print("Available models:") for model in models: if 'gemini' in model.name.lower(): print(f" - {model.name}") except Exception as list_error: print(f"Could not list models: {list_error}") return f"Lỗi phân tích Gemini: {e}" def extract_gemini_percentage(gemini_analysis): """Extract percentage confidence from Gemini analysis - Enhanced with multiple patterns""" try: gemini_lower = gemini_analysis.lower() # Look for the confidence percentage pattern import re # Pattern 1: "ĐỘ TIN CẬY: THẬT: X% / GIẢ: Y%" format (flexible spacing) patterns = [ # Standard format with "độ tin cậy" r'độ\s*tin\s*cậy[:\s]*thật[:\s]*(\d+)\s*%[:\s/]*giả[:\s]*(\d+)\s*%', # Reversed order r'độ\s*tin\s*cậy[:\s]*giả[:\s]*(\d+)\s*%[:\s/]*thật[:\s]*(\d+)\s*%', # Without "độ tin cậy" prefix r'thật[:\s]*(\d+)\s*%[:\s/]*giả[:\s]*(\d+)\s*%', r'giả[:\s]*(\d+)\s*%[:\s/]*thật[:\s]*(\d+)\s*%', # With ":" separator r'thật:\s*(\d+)\s*%\s*/\s*giả:\s*(\d+)\s*%', r'giả:\s*(\d+)\s*%\s*/\s*thật:\s*(\d+)\s*%', ] for pattern in patterns: match = re.search(pattern, gemini_lower) if match: percent1 = int(match.group(1)) percent2 = int(match.group(2)) # Determine which is real and which is fake based on context # Check which group comes first in the match match_text = match.group(0).lower() if 'thật' in match_text[:len(match_text)//2]: # "thật" appears first real_percent = percent1 fake_percent = percent2 elif 'giả' in match_text[:len(match_text)//2]: # "giả" appears first, so swap fake_percent = percent1 real_percent = percent2 else: # Can't determine from context, assume first is real real_percent = percent1 fake_percent = percent2 # Normalize to ensure they're between 0-100 real_percent = min(100, max(0, real_percent)) fake_percent = min(100, max(0, fake_percent)) # Convert to 0-1 scale real_percent = real_percent / 100 fake_percent = fake_percent / 100 # If they don't add up to 1, normalize total = real_percent + fake_percent if total > 0: real_percent = real_percent / total fake_percent = fake_percent / total else: real_percent = 0.5 fake_percent = 0.5 print(f"✅ Extracted Gemini percentages: {real_percent:.1%} real, {fake_percent:.1%} fake") return real_percent, fake_percent # Fallback: try to find individual percentages in separate lines # Look for "THẬT: X%" and "GIẢ: Y%" on separate lines or separated real_match = re.search(r'thật[:\s]*(\d+)\s*%', gemini_lower) fake_match = re.search(r'giả[:\s]*(\d+)\s*%', gemini_lower) if real_match and fake_match: real_percent = min(100, max(0, int(real_match.group(1)))) / 100 fake_percent = min(100, max(0, int(fake_match.group(1)))) / 100 # Normalize total = real_percent + fake_percent if total > 0: real_percent = real_percent / total fake_percent = fake_percent / total else: real_percent = 0.5 fake_percent = 0.5 print(f"✅ Extracted Gemini percentages (fallback): {real_percent:.1%} real, {fake_percent:.1%} fake") return real_percent, fake_percent # Last resort: Look for any percentage numbers near "thật" or "giả" # Find all percentage patterns all_percentages = re.findall(r'(\d+)\s*%', gemini_lower) if len(all_percentages) >= 2: # Try to find context around percentages for i, match_obj in enumerate(re.finditer(r'(\d+)\s*%', gemini_lower)): start_pos = max(0, match_obj.start() - 20) end_pos = min(len(gemini_lower), match_obj.end() + 20) context = gemini_lower[start_pos:end_pos] percent_val = int(match_obj.group(1)) if 'thật' in context and i == 0: real_percent = min(100, max(0, percent_val)) / 100 elif 'giả' in context and i == 1: fake_percent = min(100, max(0, percent_val)) / 100 elif 'thật' in context: real_percent = min(100, max(0, percent_val)) / 100 elif 'giả' in context: fake_percent = min(100, max(0, percent_val)) / 100 if 'real_percent' in locals() and 'fake_percent' in locals(): # Normalize total = real_percent + fake_percent if total > 0: real_percent = real_percent / total fake_percent = fake_percent / total else: real_percent = 0.5 fake_percent = 0.5 print(f"✅ Extracted Gemini percentages (last resort): {real_percent:.1%} real, {fake_percent:.1%} fake") return real_percent, fake_percent print(f"⚠️ Could not extract Gemini percentages from analysis") print(f" Analysis preview: {gemini_analysis[:200]}...") return None, None except Exception as e: print(f"❌ Error extracting Gemini percentages: {e}") import traceback print(f" Traceback: {traceback.format_exc()}") return None, None def calculate_combined_confidence(distilbert_prediction, distilbert_confidence, source_credibility, popularity_score, gemini_analysis, source_support=0.5, skip_google_search=False, num_search_results=0): """Calculate combined confidence using multi-tier system: SPECIAL CASES (Priority Order): 1. Gemini ≥95% (real OR fake) → Final Score = Gemini Max Confidence 2. Google Search ≥95% (real) → Final Score = Google Search Score 3. Google Search ≤5% (fake) → Final Score = Google Search Score 4. Cả hai ≥85% → Final Score = (Gemini + Google Search) / 2 5. Default: Weighted average (DistilBERT 35%, Gemini 35%, Google Search 30%) WEIGHTS (when Google Search available): - DistilBERT: 35% (or 52.5% if Google Search skipped) - Gemini AI: 35% (or 47.5% if Google Search skipped) - Google Search: 30% (or 0% if skipped) Note: Gemini score uses MAX confidence (≥95% in either direction triggers override) """ # Adjust weights if Google Search is skipped if skip_google_search: distilbert_weight = 0.525 # 52.5% gemini_weight = 0.475 # 47.5% google_weight = 0.0 # 0% print("⚠️ Google Search skipped - Using adjusted weights: DistilBERT 52.5%, Gemini 47.5%") else: distilbert_weight = 0.35 # 35% gemini_weight = 0.35 # 35% google_weight = 0.30 # 30% # 1. DISTILBERT SCORE if distilbert_prediction == "REAL": distilbert_score = distilbert_confidence else: distilbert_score = 1 - distilbert_confidence print(f"DistilBERT Score: {distilbert_score:.3f} ({distilbert_weight*100:.1f}% weight)") # 2. GEMINI AI SCORE gemini_lower = gemini_analysis.lower() gemini_direction = "UNKNOWN" # Initialize direction # Try to extract percentage from Gemini analysis first gemini_real_percent, gemini_fake_percent = extract_gemini_percentage(gemini_analysis) if gemini_real_percent is not None and gemini_fake_percent is not None: # Determine which direction Gemini is more confident about if gemini_real_percent > gemini_fake_percent: # Gemini thinks it's REAL - use real percentage gemini_score = gemini_real_percent gemini_direction = "REAL" else: # Gemini thinks it's FAKE - use fake percentage gemini_score = gemini_fake_percent gemini_direction = "FAKE" print(f"Gemini Score (from percentage): {gemini_score:.3f} ({gemini_weight*100:.1f}% weight) - {gemini_real_percent:.1%} real, {gemini_fake_percent:.1%} fake") print(f" → Gemini direction: {gemini_direction} with {gemini_score:.1%} confidence (triggers override if ≥95%)") else: # Fallback to conclusion analysis conclusion_score = 0.5 # Default neutral if "kết luận: giả" in gemini_lower or "kết luận: fake" in gemini_lower: conclusion_score = 0.1 # Very low for FAKE print("Gemini Conclusion: FAKE") elif "kết luận: thật" in gemini_lower or "kết luận: real" in gemini_lower: conclusion_score = 0.9 # Very high for REAL print("Gemini Conclusion: REAL") elif "giả" in gemini_lower and "kết luận" in gemini_lower: # Check if "giả" appears near "kết luận" conclusion_start = gemini_lower.find("kết luận") if conclusion_start != -1: conclusion_section = gemini_lower[conclusion_start:conclusion_start + 50] if "giả" in conclusion_section: conclusion_score = 0.1 print("Gemini Conclusion: FAKE (detected in conclusion section)") elif "thật" in conclusion_section: conclusion_score = 0.9 print("Gemini Conclusion: REAL (detected in conclusion section)") # Additional analysis indicators fake_indicators = ["giả", "fake", "vô lý", "phi thực tế", "absurd", "preposterous", "impossible", "không thể xảy ra", "không có căn cứ", "tin giả"] real_indicators = ["thật", "real", "chính xác", "đúng", "xác nhận", "verified", "đáng tin cậy"] fake_count = sum(1 for indicator in fake_indicators if indicator in gemini_lower) real_count = sum(1 for indicator in real_indicators if indicator in gemini_lower) # Adjust based on analysis indicators (but conclusion takes priority) if fake_count > real_count: analysis_adjustment = -0.2 print(f"Gemini Analysis: {fake_count} fake indicators vs {real_count} real indicators") elif real_count > fake_count: analysis_adjustment = 0.2 print(f"Gemini Analysis: {real_count} real indicators vs {fake_count} fake indicators") else: analysis_adjustment = 0.0 gemini_score = max(0.1, min(0.9, conclusion_score + analysis_adjustment)) print(f"Gemini Score (from conclusion): {gemini_score:.3f} ({gemini_weight*100:.1f}% weight)") # 3. GOOGLE SEARCH SCORE if skip_google_search: google_search_score = 0 google_search_real = False # Cannot determine if Google Search indicates real news google_search_fake = False # Cannot determine if Google Search indicates fake news print(f"Google Search Score: 0.000 (0% weight - SKIPPED due to short input)") else: # Calculate Google Search score based on credibility and support # Source credibility component (max 0.75) credibility_component = source_credibility * 0.75 # Convert to 0-0.75 scale # Source support component (max 0.75) support_component = source_support * 0.75 # Convert to 0-0.75 scale # Base score (0.25) + components, but CAP at 1.0 (100%) google_search_score = min(credibility_component + support_component + 0.25, 1.0) # If Gemini strongly says FAKE, reduce Google Search score if gemini_score < 0.3: # Gemini says FAKE (low score) google_search_score = min(google_search_score, 0.4) # Cap at 0.4 when Gemini says fake print(f"Google Search Score: {google_search_score:.3f} ({google_weight*100:.1f}% weight - {num_search_results} results) - Credibility: {source_credibility:.2f}, Support: {source_support:.2f} - CAPPED due to Gemini FAKE") else: print(f"Google Search Score: {google_search_score:.3f} ({google_weight*100:.1f}% weight - {num_search_results} results) - Credibility: {source_credibility:.2f}, Support: {source_support:.2f}") # Determine if Google Search indicates high confidence real or fake google_search_real = google_search_score >= 0.95 # ≥95% indicates strong evidence for real news google_search_fake = google_search_score <= 0.05 # ≤5% indicates strong evidence for fake news # 4. CHECK FOR SPECIAL CASES FROM SPREADSHEET (in priority order) # Case 1: Gemini ≥95% (real OR fake) → Final Score = Gemini Score if gemini_score >= 0.95: print(f"🚀 GEMINI OVERRIDE TRIGGERED: {gemini_score:.1%} ≥ 95%") # Use the actual Gemini score (not max, but the direction Gemini chose) if gemini_real_percent is not None and gemini_fake_percent is not None: if gemini_real_percent > gemini_fake_percent: # Gemini thinks it's REAL with high confidence final_confidence = gemini_real_percent print(f"🎯 GEMINI ≥95% REAL: Final Score = Gemini Real Confidence ({gemini_real_percent:.1%})") else: # Gemini thinks it's FAKE with high confidence final_confidence = gemini_fake_percent print(f"🎯 GEMINI ≥95% FAKE: Final Score = Gemini Fake Confidence ({gemini_fake_percent:.1%})") else: # Fallback to the calculated gemini_score final_confidence = gemini_score print(f"🎯 GEMINI ≥95% (Fallback): Final Score = Gemini Score ({gemini_score:.1%})") final_confidence = min(1.0, max(0.0, final_confidence)) # Bound between 0-100% print(f" - Gemini Direction: {gemini_direction}") print(f" - Gemini Confidence: {gemini_score:.1%}") print(f" - Final Confidence: {final_confidence:.1%}") print(f" - DistilBERT: IGNORED (Gemini override)") print(f" - Google Search: IGNORED (Gemini override)") print(f"✅ GEMINI OVERRIDE COMPLETE: Using {final_confidence:.1%} as final score") # Case 2: Google Search ≥95% → Final Score = Google Search Score elif google_search_real and not skip_google_search: final_confidence = min(1.0, max(0.0, google_search_score)) # Bound between 0-100% print(f"🎯 GOOGLE SEARCH ≥95%: Final Score = Google Search Score") print(f" - Google Search Score: {google_search_score:.1%}") print(f" - Final Confidence: {final_confidence:.1%}") print(f" - DistilBERT: IGNORED (Google Search override)") print(f" - Gemini: IGNORED (Google Search override)") # Case 3: Google Search ≤5% (fake) → Final Score = Google Search Score elif google_search_fake and not skip_google_search: final_confidence = min(1.0, max(0.0, google_search_score)) # Bound between 0-100% print(f"🎯 GOOGLE SEARCH ≤5% (FAKE): Final Score = Google Search Score") print(f" - Google Search Score: {google_search_score:.1%}") print(f" - Final Confidence: {final_confidence:.1%}") print(f" - DistilBERT: IGNORED (Google Search override)") print(f" - Gemini: IGNORED (Google Search override)") # Case 4: Cả hai ≥85% → Final Score = (Gemini + Google Search) / 2 elif (not skip_google_search and google_search_score >= 0.85 and gemini_score >= 0.85): final_confidence = min(1.0, max(0.0, (google_search_score + gemini_score) / 2)) # Bound between 0-100% print(f"🎯 CẢ HAI ≥85%: Final Score = (Gemini + Google Search) / 2") print(f" - Gemini Max Confidence: {gemini_score:.1%}") print(f" - Google Search Score: {google_search_score:.1%}") print(f" - Final Confidence: {final_confidence:.1%} (Average)") print(f" - DistilBERT: IGNORED (Both high confidence override)") # Case 5: Default weighted average (normal case) else: final_confidence = ( distilbert_score * distilbert_weight + gemini_score * gemini_weight + google_search_score * google_weight ) # Apply reasonable bounds for weighted average (allow full 0-100% range) final_confidence = min(1.0, max(0.0, final_confidence)) print(f"📊 DEFAULT WEIGHTED AVERAGE: Using standard weights") print(f" - DistilBERT ({distilbert_weight*100:.1f}%): {distilbert_score:.1%}") print(f" - Gemini ({gemini_weight*100:.1f}%): {gemini_score:.1%}") print(f" - Google Search ({google_weight*100:.1f}%): {google_search_score:.1%}") print(f" - Final Confidence: {final_confidence:.1%}") return final_confidence def analyze_news(news_text): """Main analysis function combining all three tools""" try: # Check if input is empty if not news_text.strip(): empty_message = """
Để bắt đầu phân tích
Hướng dẫn:
{confidence_emoji} Độ tin cậy: {confidence_level} ({max_confidence:.0%})
Kết quả: {prediction_emoji} {'Tin tức này có vẻ THẬT' if final_prediction == 'REAL' else 'Tin tức này có vẻ GIẢ' if final_prediction == 'FAKE' else 'Không thể xác định'}
Độ chắc chắn: {f"{distilbert_confidence:.0%}" if distilbert_confidence else 'Không có'} - {'Rất cao' if distilbert_confidence and distilbert_confidence > 0.8 else 'Cao' if distilbert_confidence and distilbert_confidence > 0.6 else 'Trung bình' if distilbert_confidence and distilbert_confidence > 0.4 else 'Thấp'}
Tìm thấy: {source_count_text}
Chất lượng nguồn: {source_quality} ({source_credibility:.0%})
Đánh giá: {credibility_summary}
Hỗ trợ: {support_summary}
{sources_display and f'Nguồn tìm thấy:
{sources_display}
Lỗi: {search_error["message"]}
Chi tiết: {search_error["details"]}
Ảnh hưởng: Hệ thống đang sử dụng phân tích nội dung thay vì tìm kiếm Google. Kết quả có thể kém chính xác hơn.
Tin tức này có khả năng {'THẬT' if final_prediction == 'REAL' else 'GIẢ' if final_prediction == 'FAKE' else 'KHÔNG XÁC ĐỊNH'} với độ tin cậy {max(real_confidence, fake_confidence):.0%}
Dựa trên phân tích AI, kiểm tra nguồn tin và đánh giá thông minh
Vui lòng thử lại sau
Chi tiết lỗi: {str(e)}
Gợi ý: Kiểm tra kết nối internet và thử lại
Powered by Google Search + Gemini AI + DistilBERT
💡 Lưu ý: Kết quả có thể thay đổi nhẹ giữa các lần phân tích do tính chất AI của Gemini, nhưng độ chính xác tổng thể vẫn được đảm bảo.
Khi độ tin cậy > 95%, hệ thống sẽ tự động lưu kết quả vào cơ sở tri thức để sử dụng cho các phân tích tương lai.