Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
|
| 3 |
import streamlit as st
|
| 4 |
|
| 5 |
-
# βββ
|
| 6 |
st.set_page_config(page_title="Keystroke Dynamics Auth", layout="wide")
|
| 7 |
|
| 8 |
import pandas as pd
|
|
@@ -10,7 +10,7 @@ import numpy as np
|
|
| 10 |
import joblib
|
| 11 |
import tensorflow as tf
|
| 12 |
|
| 13 |
-
# βββ Caching loaders so they only run
|
| 14 |
@st.cache_resource
|
| 15 |
def load_preprocessor(path="preprocessor.pkl"):
|
| 16 |
return joblib.load(path)
|
|
@@ -23,63 +23,69 @@ def load_label_encoder(path="label_encoder.pkl"):
|
|
| 23 |
def load_model(path="keystroke_dnn.h5"):
|
| 24 |
return tf.keras.models.load_model(path)
|
| 25 |
|
| 26 |
-
# βββ Prediction
|
| 27 |
def predict_subjects(df_raw):
|
| 28 |
preprocessor = load_preprocessor()
|
| 29 |
label_encoder = load_label_encoder()
|
| 30 |
model = load_model()
|
| 31 |
|
| 32 |
-
#
|
| 33 |
for c in ("subject", "sessionIndex", "rep"):
|
| 34 |
if c in df_raw.columns:
|
| 35 |
df_raw = df_raw.drop(columns=[c])
|
| 36 |
|
| 37 |
-
#
|
| 38 |
feature_cols = preprocessor.transformers_[0][2]
|
| 39 |
df_features = df_raw[feature_cols]
|
| 40 |
|
| 41 |
-
#
|
| 42 |
X_scaled = preprocessor.transform(df_features)
|
| 43 |
-
|
| 44 |
-
# 4) Model inference
|
| 45 |
y_prob = model.predict(X_scaled)
|
| 46 |
idx_pred = np.argmax(y_prob, axis=1)
|
| 47 |
-
|
| 48 |
-
# 5) Decode oneβhot back to original labels
|
| 49 |
labels = label_encoder.categories_[0][idx_pred]
|
| 50 |
|
| 51 |
-
#
|
| 52 |
df_out = pd.DataFrame({"predicted_subject": labels})
|
| 53 |
for i, cls in enumerate(label_encoder.categories_[0]):
|
| 54 |
df_out[f"prob_{cls}"] = y_prob[:, i]
|
| 55 |
-
|
| 56 |
return df_out
|
| 57 |
|
| 58 |
-
# βββ Streamlit
|
| 59 |
def main():
|
| 60 |
st.title("π Keystroke Dynamics Authentication")
|
| 61 |
st.markdown(
|
| 62 |
-
"
|
| 63 |
-
"The
|
| 64 |
-
"run through the DNN, and return predicted subject IDs + confidence scores."
|
| 65 |
)
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
if __name__ == "__main__":
|
| 85 |
main()
|
|
|
|
| 2 |
|
| 3 |
import streamlit as st
|
| 4 |
|
| 5 |
+
# βββ MUST BE FIRST βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 6 |
st.set_page_config(page_title="Keystroke Dynamics Auth", layout="wide")
|
| 7 |
|
| 8 |
import pandas as pd
|
|
|
|
| 10 |
import joblib
|
| 11 |
import tensorflow as tf
|
| 12 |
|
| 13 |
+
# βββ Caching loaders so they only run once per session βββββββββββββββββββββββ
|
| 14 |
@st.cache_resource
|
| 15 |
def load_preprocessor(path="preprocessor.pkl"):
|
| 16 |
return joblib.load(path)
|
|
|
|
| 23 |
def load_model(path="keystroke_dnn.h5"):
|
| 24 |
return tf.keras.models.load_model(path)
|
| 25 |
|
| 26 |
+
# βββ Prediction helper βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 27 |
def predict_subjects(df_raw):
|
| 28 |
preprocessor = load_preprocessor()
|
| 29 |
label_encoder = load_label_encoder()
|
| 30 |
model = load_model()
|
| 31 |
|
| 32 |
+
# Drop any stray columns
|
| 33 |
for c in ("subject", "sessionIndex", "rep"):
|
| 34 |
if c in df_raw.columns:
|
| 35 |
df_raw = df_raw.drop(columns=[c])
|
| 36 |
|
| 37 |
+
# Re-order to exact feature list
|
| 38 |
feature_cols = preprocessor.transformers_[0][2]
|
| 39 |
df_features = df_raw[feature_cols]
|
| 40 |
|
| 41 |
+
# Scale, predict, decode
|
| 42 |
X_scaled = preprocessor.transform(df_features)
|
|
|
|
|
|
|
| 43 |
y_prob = model.predict(X_scaled)
|
| 44 |
idx_pred = np.argmax(y_prob, axis=1)
|
|
|
|
|
|
|
| 45 |
labels = label_encoder.categories_[0][idx_pred]
|
| 46 |
|
| 47 |
+
# Build output table
|
| 48 |
df_out = pd.DataFrame({"predicted_subject": labels})
|
| 49 |
for i, cls in enumerate(label_encoder.categories_[0]):
|
| 50 |
df_out[f"prob_{cls}"] = y_prob[:, i]
|
|
|
|
| 51 |
return df_out
|
| 52 |
|
| 53 |
+
# βββ Streamlit App ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 54 |
def main():
|
| 55 |
st.title("π Keystroke Dynamics Authentication")
|
| 56 |
st.markdown(
|
| 57 |
+
"Use the sidebar to enter one row of raw keystroke features, then click **Predict**. "
|
| 58 |
+
"The model will return the predicted subject ID plus per-class probabilities."
|
|
|
|
| 59 |
)
|
| 60 |
|
| 61 |
+
# Load the featureβlist so we can build inputs
|
| 62 |
+
preprocessor = load_preprocessor()
|
| 63 |
+
feature_cols = preprocessor.transformers_[0][2]
|
| 64 |
+
|
| 65 |
+
st.sidebar.header("Enter keystroke features")
|
| 66 |
+
user_vals = {}
|
| 67 |
+
# one number_input per feature
|
| 68 |
+
for col in feature_cols:
|
| 69 |
+
# you can tweak min/max/default as appropriate
|
| 70 |
+
user_vals[col] = st.sidebar.number_input(col, value=0.0, format="%.4f")
|
| 71 |
+
|
| 72 |
+
if st.sidebar.button("Predict"):
|
| 73 |
+
# pack into single-row DataFrame
|
| 74 |
+
df_input = pd.DataFrame([user_vals], columns=feature_cols)
|
| 75 |
+
|
| 76 |
+
# Show what we're about to send
|
| 77 |
+
st.write("### Your input")
|
| 78 |
+
st.dataframe(df_input, use_container_width=True)
|
| 79 |
+
|
| 80 |
+
# Do prediction
|
| 81 |
+
try:
|
| 82 |
+
df_pred = predict_subjects(df_input)
|
| 83 |
+
st.write("### Prediction")
|
| 84 |
+
st.dataframe(df_pred, use_container_width=True)
|
| 85 |
+
except KeyError as e:
|
| 86 |
+
st.error(f"Missing feature (typo?): {e}")
|
| 87 |
+
except Exception as e:
|
| 88 |
+
st.error(f"Prediction error: {e}")
|
| 89 |
|
| 90 |
if __name__ == "__main__":
|
| 91 |
main()
|