Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import gdown
|
| 6 |
+
import pickle
|
| 7 |
+
import joblib
|
| 8 |
+
|
| 9 |
+
# ---------------------- Download and Load Ensemble Model ----------------------
|
| 10 |
+
# Path to save the downloaded model
|
| 11 |
+
ensemble_model_path = "ensemble_model.pkl"
|
| 12 |
+
|
| 13 |
+
# Download the model if it does not exist yet
|
| 14 |
+
if not os.path.exists(ensemble_model_path):
|
| 15 |
+
url = "https://drive.google.com/uc?export=download&id=1jHtHOzfhtWMyYqX_pbQJ5akYAe6ZhfhU"
|
| 16 |
+
gdown.download(url, ensemble_model_path, quiet=False)
|
| 17 |
+
|
| 18 |
+
# Load the ensemble model using pickle
|
| 19 |
+
with open(ensemble_model_path, "rb") as f:
|
| 20 |
+
ensemble = pickle.load(f)
|
| 21 |
+
|
| 22 |
+
# ---------------------- Load Preprocessing Objects ----------------------
|
| 23 |
+
# Ensure that the files onehotencoder.pkl and scaler.pkl are in the same directory.
|
| 24 |
+
encoder = joblib.load("onehotencoder.pkl")
|
| 25 |
+
scaler = joblib.load("scaler.pkl")
|
| 26 |
+
|
| 27 |
+
# ---------------------- Set up the Streamlit App ----------------------
|
| 28 |
+
st.title("Customer Churn Predictor")
|
| 29 |
+
st.write("""
|
| 30 |
+
This app uses a trained machine learning model to predict whether a customer is likely to churn.
|
| 31 |
+
Please enter the customer details below.
|
| 32 |
+
""")
|
| 33 |
+
|
| 34 |
+
# ---------------------- User Inputs ----------------------
|
| 35 |
+
st.header("Customer Details")
|
| 36 |
+
age = st.number_input("Age", min_value=18, max_value=100, value=30)
|
| 37 |
+
tenure = st.number_input("Tenure (in months)", min_value=0, max_value=120, value=12)
|
| 38 |
+
usage_frequency = st.number_input("Usage Frequency", min_value=0, max_value=100, value=5)
|
| 39 |
+
support_calls = st.number_input("Support Calls", min_value=0, max_value=50, value=2)
|
| 40 |
+
total_spend = st.number_input("Total Spend", min_value=0.0, max_value=10000.0, value=100.0, step=10.0)
|
| 41 |
+
|
| 42 |
+
# Input for categorical fields (modify options as needed for your training data)
|
| 43 |
+
gender = st.selectbox("Gender", options=["Male", "Female"])
|
| 44 |
+
subscription_type = st.selectbox("Subscription Type", options=["Type A", "Type B", "Type C"])
|
| 45 |
+
contract_length = st.selectbox("Contract Length", options=["Monthly", "Quarterly", "Yearly"])
|
| 46 |
+
|
| 47 |
+
# Create a DataFrame for the input
|
| 48 |
+
input_df = pd.DataFrame({
|
| 49 |
+
"Age": [age],
|
| 50 |
+
"Tenure": [tenure],
|
| 51 |
+
"Usage Frequency": [usage_frequency],
|
| 52 |
+
"Support Calls": [support_calls],
|
| 53 |
+
"Total Spend": [total_spend],
|
| 54 |
+
"Gender": [gender],
|
| 55 |
+
"Subscription Type": [subscription_type],
|
| 56 |
+
"Contract Length": [contract_length]
|
| 57 |
+
})
|
| 58 |
+
|
| 59 |
+
st.write("### Input Data")
|
| 60 |
+
st.write(input_df)
|
| 61 |
+
|
| 62 |
+
# ---------------------- Preprocessing ----------------------
|
| 63 |
+
# 1. Encode categorical features using the loaded OneHotEncoder.
|
| 64 |
+
categorical_cols = ["Gender", "Subscription Type", "Contract Length"]
|
| 65 |
+
encoded_cat = encoder.transform(input_df[categorical_cols])
|
| 66 |
+
encoded_cat_df = pd.DataFrame(encoded_cat, columns=encoder.get_feature_names_out(categorical_cols))
|
| 67 |
+
|
| 68 |
+
# 2. Drop original categorical columns and concatenate encoded features.
|
| 69 |
+
input_df = input_df.drop(categorical_cols, axis=1)
|
| 70 |
+
input_transformed = pd.concat([input_df.reset_index(drop=True), encoded_cat_df.reset_index(drop=True)], axis=1)
|
| 71 |
+
|
| 72 |
+
# 3. Standardize numerical features using the loaded StandardScaler.
|
| 73 |
+
input_scaled = scaler.transform(input_transformed)
|
| 74 |
+
|
| 75 |
+
# ---------------------- Run Prediction ----------------------
|
| 76 |
+
if st.button("Predict Churn"):
|
| 77 |
+
prediction = ensemble.predict(input_scaled)
|
| 78 |
+
prediction_proba = ensemble.predict_proba(input_scaled)[:, 1]
|
| 79 |
+
|
| 80 |
+
# Interpret prediction: assuming 1 = churn, 0 = not churn
|
| 81 |
+
result = "Churned" if prediction[0] == 1 else "Not Churned"
|
| 82 |
+
st.write("### Prediction Results")
|
| 83 |
+
st.write(f"**Prediction:** {result}")
|
| 84 |
+
st.write(f"**Churn Probability:** {prediction_proba[0]:.2f}")
|