File size: 25,009 Bytes
7e2816d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
# backend/jade/scholar.py

import os
import sys
import json
import time
import re
import random
import uuid
from io import BytesIO
from typing import List, Dict, Any, Optional
import numpy as np

# --- 1. Setup e Dependências ---
# Removido setup_environment() pois será tratado no requirements.txt e Dockerfile

try:
    import groq
    import pypdf
    import faiss
    import graphviz
    import genanki
    from gtts import gTTS
    from pydub import AudioSegment
    import requests
    from bs4 import BeautifulSoup
    from youtube_transcript_api import YouTubeTranscriptApi
    from sentence_transformers import SentenceTransformer
    from fpdf import FPDF
    from duckduckgo_search import DDGS
except ImportError:
    # Em produção, isso deve falhar se as dependências não estiverem instaladas
    pass

# --- 2. Configuração Global ---
# Usaremos a configuração passada ou variável de ambiente
GROQ_API_KEY = os.getenv("GROQ_API_KEY")

# --- 3. Camada de Ferramentas (Tooling Layer) ---

class ToolBox:
    """Caixa de ferramentas para os agentes."""
    
    @staticmethod
    def read_pdf(filepath: str) -> str:
        try:
            print(f"📄 [Ferramenta] Lendo PDF: {filepath}...")
            reader = pypdf.PdfReader(filepath)
            text = "".join([p.extract_text() or "" for p in reader.pages])
            return re.sub(r'\s+', ' ', text).strip()
        except Exception as e:
            return f"Erro ao ler PDF: {str(e)}"

    @staticmethod
    def scrape_web(url: str) -> str:
        try:
            print(f"🌐 [Ferramenta] Acessando URL: {url}...")
            headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)'}
            response = requests.get(url, headers=headers, timeout=10)
            soup = BeautifulSoup(response.content, 'html.parser')
            for script in soup(["script", "style", "header", "footer", "nav"]):
                script.extract()
            text = soup.get_text()
            return re.sub(r'\s+', ' ', text).strip()[:40000]
        except Exception as e:
            print(f"Erro ao acessar {url}: {e}")
            return ""

    @staticmethod
    def search_topic(topic: str) -> List[str]:
        """Pesquisa no DuckDuckGo e retorna URLs."""
        print(f"🔎 [Ferramenta] Pesquisando na Web sobre: '{topic}'...")
        urls = []
        try:
            with DDGS() as ddgs:
                results = list(ddgs.text(topic, max_results=3))
                for r in results:
                    urls.append(r['href'])
        except Exception as e:
            print(f"Erro na busca: {e}")
        return urls

    @staticmethod
    def get_youtube_transcript(url: str) -> str:
        try:
            print(f"📺 [Ferramenta] Extraindo legendas do YouTube: {url}...")
            video_id = url.split("v=")[-1].split("&")[0]
            transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['pt', 'en'])
            text = " ".join([t['text'] for t in transcript])
            return text
        except Exception as e:
            return f"Erro ao pegar legendas do YouTube: {str(e)}"

    @staticmethod
    def generate_audio_mix(script: List[Dict], filename="aula_podcast.mp3"):
        print("🎙️ [Estúdio] Produzindo áudio imersivo...")
        combined = AudioSegment.silent(duration=500)
        
        for line in script:
            speaker = line.get("speaker", "Narrador").upper()
            text = line.get("text", "")
            
            if "BERTA" in speaker or "PROFESSORA" in speaker or "AGENT B" in speaker:
                tts = gTTS(text=text, lang='pt', tld='pt', slow=False)
            else:
                # Gabriel / Agent A
                tts = gTTS(text=text, lang='pt', tld='com.br', slow=False)
            
            fp = BytesIO()
            tts.write_to_fp(fp)
            fp.seek(0)
            
            try:
                segment = AudioSegment.from_file(fp, format="mp3")
                combined += segment
                combined += AudioSegment.silent(duration=300)
            except: pass

        output_path = os.path.join("backend/generated", filename)
        os.makedirs(os.path.dirname(output_path), exist_ok=True)
        combined.export(output_path, format="mp3")
        return output_path

    @staticmethod
    def generate_mindmap_image(dot_code: str, filename="mapa_mental"):
        try:
            print("🗺️ [Design] Renderizando Mapa Mental...")
            clean_dot = dot_code.replace("```dot", "").replace("```", "").strip()
            
            # Ensure generated directory exists
            output_dir = "backend/generated"
            os.makedirs(output_dir, exist_ok=True)
            output_path = os.path.join(output_dir, filename)
            
            src = graphviz.Source(clean_dot)
            src.format = 'png'
            filepath = src.render(output_path, view=False)
            return filepath
        except Exception as e:
            print(f"Erro ao gerar gráfico: {e}")
            return None
            
    @staticmethod
    def generate_anki_deck(qa_pairs: List[Dict], deck_name="ScholarGraph Deck"):
        print("🧠 [Anki] Criando arquivo de Flashcards (.apkg)...")
        try:
            model_id = random.randrange(1 << 30, 1 << 31)
            deck_id = random.randrange(1 << 30, 1 << 31)
            
            my_model = genanki.Model(
              model_id,
              'Simple Model',
              fields=[{'name': 'Question'}, {'name': 'Answer'}],
              templates=[{
                'name': 'Card 1',
                'qfmt': '{{Question}}',
                'afmt': '{{FrontSide}}<hr id="answer">{{Answer}}',
              }]
            )
            
            my_deck = genanki.Deck(deck_id, deck_name)
            
            for item in qa_pairs:
                my_deck.add_note(genanki.Note(
                  model=my_model,
                  fields=[item['question'], item['answer']]
                ))
            
            output_dir = "backend/generated"
            os.makedirs(output_dir, exist_ok=True)
            filename = os.path.join(output_dir, f"flashcards_{uuid.uuid4().hex[:8]}.apkg")
            genanki.Package(my_deck).write_to_file(filename)
            return filename
        except Exception as e:
            print(f"Erro ao criar Anki deck: {e}")
            return None

# --- 4. Vector Store (RAG) ---

class VectorMemory:
    def __init__(self):
        print("🧠 [Memória] Inicializando Banco de Vetores (RAG)...")
        # Modelo leve para embeddings
        self.model = SentenceTransformer('all-MiniLM-L6-v2')
        self.index = None
        self.chunks = []
    
    def ingest(self, text: str, chunk_size=500):
        words = text.split()
        # Cria chunks sobrepostos para melhor contexto
        self.chunks = [' '.join(words[i:i+chunk_size]) for i in range(0, len(words), int(chunk_size*0.8))]
        
        print(f"🧠 [Memória] Vetorizando {len(self.chunks)} fragmentos...")
        if not self.chunks: return

        embeddings = self.model.encode(self.chunks)
        dimension = embeddings.shape[1]
        self.index = faiss.IndexFlatL2(dimension)
        self.index.add(np.array(embeddings).astype('float32'))
        print("🧠 [Memória] Indexação concluída.")

    def retrieve(self, query: str, k=3) -> str:
        if not self.index: return ""
        query_vec = self.model.encode([query])
        D, I = self.index.search(np.array(query_vec).astype('float32'), k)
        
        results = [self.chunks[i] for i in I[0] if i < len(self.chunks)]
        return "\n\n".join(results)

# --- 5. Estado e LLM ---

class GraphState:
    def __init__(self):
        self.raw_content: str = ""
        self.summary: str = ""
        self.script: List[Dict] = []
        self.quiz_data: List[Dict] = []
        self.mindmap_path: str = ""
        self.flashcards: List[Dict] = []
        self.current_quiz_question: int = 0
        self.xp: int = 0
        self.mode: str = "input" # input, menu, quiz

class LLMEngine:
    def __init__(self, api_key=None):
        self.api_key = api_key or os.environ.get("GROQ_API_KEY")
        self.client = groq.Groq(api_key=self.api_key)
        self.model = "moonshotai/kimi-k2-instruct-0905"
    
    def chat(self, messages: List[Dict], json_mode=False) -> str:
        try:
            kwargs = {"messages": messages, "model": self.model, "temperature": 0.8}
            if json_mode: kwargs["response_format"] = {"type": "json_object"}
            return self.client.chat.completions.create(**kwargs).choices[0].message.content
        except Exception as e:
            return f"Erro na IA: {e}"

# --- 6. Agentes Avançados (GOD MODE) ---

class ResearcherAgent:
    """Agente que pesquisa na web se o input for um tópico."""
    def deep_research(self, topic: str) -> str:
        print(f"🕵️ [Pesquisador] Iniciando Deep Research sobre: {topic}")
        urls = ToolBox.search_topic(topic)
        if not urls:
            return f"Não encontrei informações sobre {topic}."
            
        full_text = ""
        for url in urls:
            content = ToolBox.scrape_web(url)
            if content:
                full_text += f"\n\n--- Fonte: {url} ---\n{content[:10000]}"
        
        return full_text

class FlashcardAgent:
    """Agente focado em memorização (Anki)."""
    def __init__(self, llm: LLMEngine):
        self.llm = llm

    def create_deck(self, content: str) -> List[Dict]:
        print("🃏 [Flashcard] Gerando pares Pergunta-Resposta...")
        prompt = f"""

        Crie 10 Flashcards (Pergunta e Resposta) sobre o conteúdo para memorização.

        SAÍDA JSON: {{ "cards": [ {{ "question": "...", "answer": "..." }} ] }}

        Conteúdo: {content[:15000]}

        """
        try:
            resp = self.llm.chat([{"role": "user", "content": prompt}], json_mode=True)
            return json.loads(resp).get("cards", [])
        except: return []

class IngestAgent:
    def __init__(self, researcher: ResearcherAgent):
        self.researcher = researcher

    def process(self, user_input: str) -> str:
        # Se for arquivo
        if user_input.lower().endswith(".pdf") and os.path.exists(user_input):
            return ToolBox.read_pdf(user_input)
        # Se for URL
        elif "youtube.com" in user_input or "youtu.be" in user_input:
            return ToolBox.get_youtube_transcript(user_input)
        elif user_input.startswith("http"):
            return ToolBox.scrape_web(user_input)
        # Se não for URL nem arquivo, assume que é Tópico para Pesquisa
        else:
            print("🔍 Entrada detectada como Tópico. Ativando ResearcherAgent...")
            return self.researcher.deep_research(user_input)

class ProfessorAgent:
    def __init__(self, llm: LLMEngine):
        self.llm = llm
    
    def summarize(self, full_text: str) -> str:
        print("🧠 [Professor] Gerando resumo estratégico...")
        prompt = f"""

        Você é um Professor Universitário. Crie um resumo estruturado e profundo.

        Texto: {full_text[:25000]}

        Formato: # Título / ## Introdução / ## Pontos Chave / ## Conclusão

        """
        return self.llm.chat([{"role": "user", "content": prompt}])

class VisualizerAgent:
    def __init__(self, llm: LLMEngine):
        self.llm = llm
        
    def create_mindmap(self, text: str) -> str:
        print("🎨 [Visualizador] Projetando Mapa Mental...")
        prompt = f"""

        Crie um código GRAPHVIZ (DOT) para um mapa mental deste conteúdo.

        Use formas coloridas. NÃO explique, apenas dê o código DOT dentro de ```dot ... ```.

        Texto: {text[:15000]}

        """
        response = self.llm.chat([{"role": "user", "content": prompt}])
        match = re.search(r'```dot(.*?)```', response, re.DOTALL)
        if match: return match.group(1).strip()
        return response

class ScriptwriterAgent:
    def __init__(self, llm: LLMEngine):
        self.llm = llm

    def create_script(self, content: str, mode="lecture") -> List[Dict]:
        if mode == "debate":
            print("🔥 [Roteirista] Criando DEBATE INTENSO...")
            prompt = f"""

            Crie um DEBATE acalorado mas intelectual entre dois agentes (8 falas).

            Personagens: 

            - AGENT A (Gabriel): A favor / Otimista / Pragmático.

            - AGENT B (Berta): Contra / Cética / Filosófica.

            

            SAÍDA JSON: {{ "dialogue": [ {{"speaker": "Agent A", "text": "..."}}, {{"speaker": "Agent B", "text": "..."}} ] }}

            Tema Base: {content[:15000]}

            """
        else:
            print("✍️ [Roteirista] Escrevendo roteiro de aula...")
            prompt = f"""

            Crie um roteiro de podcast (8 falas).

            Personagens: GABRIEL (Aluno BR) e BERTA (Professora PT).

            SAÍDA JSON: {{ "dialogue": [ {{"speaker": "Gabriel", "text": "..."}}, ...] }}

            Base: {content[:15000]}

            """
        
        try:
            resp = self.llm.chat([{"role": "user", "content": prompt}], json_mode=True)
            return json.loads(resp).get("dialogue", [])
        except: return []

class ExaminerAgent:
    def __init__(self, llm: LLMEngine):
        self.llm = llm
        
    def generate_quiz(self, content: str) -> List[Dict]:
        print("📝 [Examinador] Criando Prova Gamificada...")
        prompt = f"""

        Crie 5 perguntas de múltipla escolha (Difíceis).

        SAÍDA JSON: {{ "quiz": [ {{ "question": "...", "options": ["A)..."], "correct_option": "A", "explanation": "..." }} ] }}

        Base: {content[:15000]}

        """
        try:
            resp = self.llm.chat([{"role": "user", "content": prompt}], json_mode=True)
            return json.loads(resp).get("quiz", [])
        except: return []

class PublisherAgent:
    def create_handout(self, state: GraphState, filename="Apostila_Estudos.pdf"):
        print("📚 [Editora] Diagramando Apostila PDF...")
        pdf = FPDF()
        pdf.add_page()
        pdf.set_font("Arial", size=12)
        pdf.set_font("Arial", 'B', 16)
        pdf.cell(0, 10, "Apostila de Estudos - Scholar Graph", ln=True, align='C')
        pdf.ln(10)
        pdf.set_font("Arial", size=11)
        safe_summary = state.summary.encode('latin-1', 'replace').decode('latin-1')
        pdf.multi_cell(0, 7, safe_summary)
        if state.mindmap_path and os.path.exists(state.mindmap_path):
            pdf.add_page()
            pdf.image(state.mindmap_path, x=10, y=30, w=190)
        
        output_dir = "backend/generated"
        os.makedirs(output_dir, exist_ok=True)
        filepath = os.path.join(output_dir, filename)
        pdf.output(filepath)
        return filepath

# --- 7. Agent Class wrapper for backend integration ---

class ScholarAgent:
    def __init__(self):
        self.user_states = {} # Map user_id to (ScholarGraphGodMode instance or GraphState)
        self.api_key = os.getenv("GROQ_API_KEY")
        # Initialize one engine for general use if needed, but we probably need instances per user or shared resources.
        # We'll create instances per user request if they don't exist? 
        # Actually, let's keep it simple. We store state per user.
    
    def get_or_create_state(self, user_id):
        if user_id not in self.user_states:
            self.user_states[user_id] = {
                "state": GraphState(),
                "memory": VectorMemory(),
                "llm": LLMEngine(self.api_key),
                "researcher": ResearcherAgent(),
                "ingestor": None, # Will be init with researcher
                "professor": None,
                "visualizer": None,
                "scriptwriter": None,
                "examiner": None,
                "flashcarder": None,
                "publisher": None
            }
            # Wiring dependencies
            u = self.user_states[user_id]
            u["ingestor"] = IngestAgent(u["researcher"])
            u["professor"] = ProfessorAgent(u["llm"])
            u["visualizer"] = VisualizerAgent(u["llm"])
            u["scriptwriter"] = ScriptwriterAgent(u["llm"])
            u["examiner"] = ExaminerAgent(u["llm"])
            u["flashcarder"] = FlashcardAgent(u["llm"])
            u["publisher"] = PublisherAgent()
            
        return self.user_states[user_id]

    def respond(self, history, user_input, user_id="default", vision_context=None):
        """

        Adapts the CLI interaction loop to a Request/Response model.

        """
        u = self.get_or_create_state(user_id)
        state = u["state"]
        
        # Helper to format menu
        def get_menu():
            return (
                "\n\n🎓 *MENU SCHOLAR GRAPH*\n"
                "1. 🧠 Resumo Estratégico\n"
                "2. 🗺️ Mapa Mental Visual\n"
                "3. 🎧 Podcast (Aula Didática)\n"
                "4. 🔥 DEBATE IA (Visões Opostas)\n"
                "5. 🎮 Quiz Gamificado\n"
                "6. 🃏 Gerar Flashcards (Anki .apkg)\n"
                "7. 📚 Baixar Apostila Completa\n"
                "8. 🔄 Novo Tópico\n"
                "👉 Escolha uma opção (número ou texto):"
            )

        # Helper for response with optional file
        response_text = ""
        audio_path = None
        
        # State Machine Logic
        
        # 1. Input Mode: Waiting for topic/url/pdf
        if state.mode == "input":
            if not user_input.strip():
                return "Por favor, forneça um tópico, URL ou arquivo PDF para começar.", None, history

            response_text = f"🔄 Processando '{user_input}'... (Isso pode levar alguns segundos)"
            
            # Process content
            content = u["ingestor"].process(user_input)
            if not content or len(content) < 50:
                response_text = "❌ Falha ao obter conteúdo suficiente ou tópico não encontrado. Tente novamente."
                return response_text, None, history
            
            state.raw_content = content
            u["memory"].ingest(content)
            state.mode = "menu"
            response_text += "\n✅ Conteúdo processado com sucesso!" + get_menu()
            
            # Update history
            history.append({"role": "user", "content": user_input})
            history.append({"role": "assistant", "content": response_text})
            return response_text, None, history

        # 2. Quiz Mode
        elif state.mode == "quiz":
            # Check answer
            current_q = state.quiz_data[state.current_quiz_question]
            ans = user_input.strip().upper()
            
            feedback = ""
            if ans and ans[0] == current_q['correct_option'][0]:
                state.xp += 100
                feedback = f"✨ ACERTOU! +100 XP. (Total: {state.xp})\n"
            else:
                feedback = f"💀 Errou... A resposta era {current_q['correct_option']}.\nExplanation: {current_q.get('explanation', '')}\n"
            
            state.current_quiz_question += 1
            
            if state.current_quiz_question < len(state.quiz_data):
                # Next Question
                q = state.quiz_data[state.current_quiz_question]
                response_text = feedback + f"\n🔹 QUESTÃO {state.current_quiz_question+1}:\n{q['question']}\n" + "\n".join(q['options'])
            else:
                # End of Quiz
                response_text = feedback + f"\n🏆 FIM DO QUIZ! TOTAL DE XP: {state.xp}\n" + get_menu()
                state.mode = "menu"
                
            history.append({"role": "user", "content": user_input})
            history.append({"role": "assistant", "content": response_text})
            return response_text, None, history

        # 3. Menu Mode
        elif state.mode == "menu":
            opt = user_input.strip()
            
            if opt.startswith("1") or "resumo" in opt.lower():
                state.summary = u["professor"].summarize(state.raw_content)
                response_text = "📝 *RESUMO ESTRATÉGICO:*\n\n" + state.summary + get_menu()
                
            elif opt.startswith("2") or "mapa" in opt.lower():
                dot = u["visualizer"].create_mindmap(state.raw_content)
                filename = f"mindmap_{uuid.uuid4().hex[:8]}"
                path = ToolBox.generate_mindmap_image(dot, filename)
                if path:
                    state.mindmap_path = path
                    # Since we return text and audio only in this signature, we might need a way to send image.
                    # The current app structure supports sending audio_base64. 
                    # We might need to hack it to send image link or modify app.py.
                    # For now, let's return a link relative to backend/generated (assuming static serving)
                    response_text = f"🗺️ Mapa Mental gerado: [Baixar Imagem](/generated/{os.path.basename(path)})\n" + get_menu()
                else:
                    response_text = "❌ Erro ao gerar mapa mental." + get_menu()

            elif opt.startswith("3") or "podcast" in opt.lower():
                script = u["scriptwriter"].create_script(state.raw_content, mode="lecture")
                filename = f"podcast_{uuid.uuid4().hex[:8]}.mp3"
                path = ToolBox.generate_audio_mix(script, filename)
                audio_path = path # Return this to be played
                response_text = "🎧 Aqui está o seu Podcast sobre o tema." + get_menu()

            elif opt.startswith("4") or "debate" in opt.lower():
                script = u["scriptwriter"].create_script(state.raw_content, mode="debate")
                filename = f"debate_{uuid.uuid4().hex[:8]}.mp3"
                path = ToolBox.generate_audio_mix(script, filename)
                audio_path = path
                response_text = "🔥 Debate gerado com sucesso." + get_menu()

            elif opt.startswith("5") or "quiz" in opt.lower():
                state.quiz_data = u["examiner"].generate_quiz(state.raw_content)
                if state.quiz_data:
                    state.mode = "quiz"
                    state.current_quiz_question = 0
                    state.xp = 0
                    q = state.quiz_data[0]
                    response_text = f"🎮 *MODO QUIZ INICIADO*\n\n🔹 QUESTÃO 1:\n{q['question']}\n" + "\n".join(q['options'])
                else:
                    response_text = "❌ Não foi possível gerar o quiz." + get_menu()

            elif opt.startswith("6") or "flashcard" in opt.lower():
                cards = u["flashcarder"].create_deck(state.raw_content)
                if cards:
                    path = ToolBox.generate_anki_deck(cards)
                    if path:
                        response_text = f"✅ Flashcards gerados: [Baixar Deck Anki](/generated/{os.path.basename(path)})" + get_menu()
                    else:
                        response_text = "❌ Erro ao salvar arquivo." + get_menu()
                else:
                    response_text = "❌ Erro ao gerar flashcards." + get_menu()

            elif opt.startswith("7") or "apostila" in opt.lower():
                if state.summary:
                    filename = f"apostila_{uuid.uuid4().hex[:8]}.pdf"
                    path = u["publisher"].create_handout(state, filename)
                    response_text = f"📚 Apostila pronta: [Baixar PDF](/generated/{os.path.basename(path)})" + get_menu()
                else:
                    response_text = "⚠️ Gere o Resumo (Opção 1) primeiro!" + get_menu()
            
            elif opt.startswith("8") or "novo" in opt.lower() or "sair" in opt.lower():
                state.mode = "input"
                # Reset state?
                state.raw_content = ""
                state.summary = ""
                response_text = "🔄 Reiniciando... Qual o novo tópico, link ou PDF?"
            
            else:
                response_text = "Opção inválida. Tente novamente.\n" + get_menu()

            history.append({"role": "user", "content": user_input})
            history.append({"role": "assistant", "content": response_text})
            return response_text, audio_path, history

        return "Erro de estado.", None, history