File size: 12,964 Bytes
87ac2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import streamlit as st
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
import time

# --- CONFIGURAÇÕES ---
BOARD_SIZE = 8
DEVICE = torch.device("cpu")
MODEL_PATH = "checkers_master_final.pth" # Certifique-se de que este arquivo está no Space!

# --- DEFINIÇÃO DAS CLASSES (Rede Neural e Jogo) ---
# A Berta copiou a lógica exata do seu script para garantir que funcione igual.

class Checkers:
    def get_initial_board(self):
        board = np.zeros((BOARD_SIZE, BOARD_SIZE), dtype=np.int8)
        for r in range(3):
            for c in range(BOARD_SIZE):
                if (r + c) % 2 == 1: board[r, c] = -1
        for r in range(5, BOARD_SIZE):
            for c in range(BOARD_SIZE):
                if (r + c) % 2 == 1: board[r, c] = 1
        return board

    def get_valid_moves(self, board, player):
        jumps = self._get_all_jumps(board, player)
        if jumps: return jumps
        moves = []
        for r in range(BOARD_SIZE):
            for c in range(BOARD_SIZE):
                if board[r, c] * player > 0: moves.extend(self._get_simple_moves(board, r, c))
        return moves

    def _get_simple_moves(self, board, r, c):
        moves = []; piece = board[r, c]; player = np.sign(piece)
        directions = [(-1, -1), (-1, 1)] if player == 1 else [(1, -1), (1, 1)]
        if abs(piece) == 2: directions.extend([(1, -1), (1, 1)] if player == 1 else [(-1, -1), (-1, 1)])
        for dr, dc in directions:
            nr, nc = r + dr, c + dc
            if 0 <= nr < BOARD_SIZE and 0 <= nc < BOARD_SIZE and board[nr, nc] == 0: moves.append(((r, c), (nr, nc)))
        return moves

    def _get_all_jumps(self, board, player):
        all_jumps = []
        for r in range(BOARD_SIZE):
            for c in range(BOARD_SIZE):
                if board[r, c] * player > 0:
                    jumps = self._find_jump_sequences(np.copy(board), r, c)
                    if jumps: all_jumps.extend(jumps)
        if not all_jumps: return []
        max_len = max(len(j) for j in all_jumps)
        return [j for j in all_jumps if len(j) == max_len]

    def _find_jump_sequences(self, board, r, c, path=[]):
        piece = board[r, c]; player = np.sign(piece)
        if piece == 0: return []
        directions = [(-1, -1), (-1, 1), (1, -1), (1, 1)] if abs(piece) == 2 else \
                     [(-1, -1), (-1, 1)] if player == 1 else [(1, -1), (1, 1)]
        found_jumps = []
        for dr, dc in directions:
            mid_r, mid_c = r + dr, c + dc; end_r, end_c = r + 2*dr, c + 2*dc
            if 0 <= end_r < BOARD_SIZE and 0 <= end_c < BOARD_SIZE and \
               board[mid_r, mid_c] * player < 0 and board[end_r, end_c] == 0:
                move = ((r, c), (end_r, end_c))
                new_board = np.copy(board); new_board[end_r, end_c] = piece; new_board[r, c] = 0; new_board[mid_r, mid_c] = 0
                next_jumps = self._find_jump_sequences(new_board, end_r, end_c, path + [move])
                if next_jumps: found_jumps.extend(next_jumps)
                else: found_jumps.append(path + [move])
        return found_jumps

    def apply_move(self, board, move):
        b_ = np.copy(board)
        is_jump_chain = isinstance(move, list) or (isinstance(move, tuple) and isinstance(move[0], tuple) and isinstance(move[0][0], tuple))
        sub_moves = move if is_jump_chain else [move]
        for (r1, c1), (r2, c2) in sub_moves:
            piece = b_[r1, c1]
            if piece == 0: continue
            b_[r2, c2] = piece; b_[r1, c1] = 0
            if abs(r1 - r2) == 2: b_[(r1+r2)//2, (c1+c2)//2] = 0
        r_final, c_final = sub_moves[-1][1]; p_final = b_[r_final, c_final]
        if p_final == 1 and r_final == 0: b_[r_final, c_final] = 2
        if p_final == -1 and r_final == BOARD_SIZE-1: b_[r_final, c_final] = -2
        return b_

    def check_game_over(self, board, player):
        if not self.get_valid_moves(board, player): return -1
        if not np.any(np.sign(board) == -player): return 1
        return None

def state_to_tensor(board, player):
    tensor = np.zeros((5, BOARD_SIZE, BOARD_SIZE), dtype=np.float32)
    tensor[0, board == player] = 1; tensor[1, board == player*2] = 1
    tensor[2, board == -player] = 1; tensor[3, board == -player*2] = 1
    if player == 1: tensor[4,:,:] = 1.0
    return torch.from_numpy(tensor).unsqueeze(0).to(DEVICE)

class PolicyValueNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        num_channels = 64
        self.body = nn.Sequential(nn.Conv2d(5, num_channels, 3, padding=1), nn.BatchNorm2d(num_channels), nn.ReLU(),
                                  nn.Conv2d(num_channels, num_channels, 3, padding=1), nn.BatchNorm2d(num_channels), nn.ReLU(),
                                  nn.Conv2d(num_channels, num_channels, 3, padding=1), nn.BatchNorm2d(num_channels), nn.ReLU())
        self.policy_head = nn.Sequential(nn.Conv2d(num_channels, 4, 1), nn.BatchNorm2d(4), nn.ReLU(), nn.Flatten(),
                                         nn.Linear(4 * BOARD_SIZE * BOARD_SIZE, BOARD_SIZE * BOARD_SIZE))
        self.value_head = nn.Sequential(nn.Conv2d(num_channels, 2, 1), nn.BatchNorm2d(2), nn.ReLU(), nn.Flatten(),
                                        nn.Linear(2 * BOARD_SIZE * BOARD_SIZE, 64), nn.ReLU(),
                                        nn.Linear(64, 1), nn.Tanh())
    def forward(self, x):
        x = self.body(x); return self.policy_head(x), self.value_head(x)

class MCTSNode:
    def __init__(self, parent=None, prior=0.0):
        self.parent = parent; self.prior = prior; self.children = {}; self.visits = 0; self.value_sum = 0.0
    def get_value(self): return self.value_sum / self.visits if self.visits > 0 else 0.0

class MCTS:
    def __init__(self, game, model, sims=100, c_puct=1.5):
        self.game, self.model, self.sims, self.c_puct = game, model, sims, c_puct
    def run(self, board, player):
        root = MCTSNode()
        self._expand_and_evaluate(root, board, player)
        for _ in range(self.sims):
            node, search_board, search_player = root, np.copy(board), player
            search_path = [root]
            while node.children:
                move, node = self._select_child(node)
                search_board = self.game.apply_move(search_board, move); search_player *= -1; search_path.append(node)
            value = self.game.check_game_over(search_board, search_player)
            if value is None and node.visits == 0: value = self._expand_and_evaluate(node, search_board, search_player)
            elif value is None: value = node.get_value()
            for n in reversed(search_path): n.visits += 1; n.value_sum += value; value *= -1
        moves = list(root.children.keys())
        visits = np.array([root.children[m].visits for m in moves])
        return moves, visits / (np.sum(visits) + 1e-9)
    def _select_child(self, node):
        sqrt_total_visits = np.sqrt(node.visits); best_move, max_score = None, -np.inf
        for move, child in node.children.items():
            score = -child.get_value() + self.c_puct * child.prior * sqrt_total_visits / (1 + child.visits)
            if score > max_score: max_score, best_move = score, move
        return best_move, node.children[best_move]
    def _expand_and_evaluate(self, node, board, player):
        valid_moves = self.game.get_valid_moves(board, player)
        if not valid_moves: return -1.0
        with torch.no_grad():
            policy_logits, value_tensor = self.model(state_to_tensor(board, player))
        value = value_tensor.item()
        policy_probs = F.softmax(policy_logits, dim=1).cpu().numpy()[0]
        move_priors = {}; total_prior = 0
        for move in valid_moves:
            if isinstance(move, list): start_pos_tuple = move[0][0]
            else: start_pos_tuple = move[0]
            start_pos_idx = start_pos_tuple[0] * BOARD_SIZE + start_pos_tuple[1]
            prior = policy_probs[start_pos_idx]
            key = tuple(move) if isinstance(move, list) else move
            move_priors[key] = prior; total_prior += prior
        if total_prior > 0:
            for move_key, prior in move_priors.items(): node.children[move_key] = MCTSNode(parent=node, prior=prior / total_prior)
        else:
            for move in valid_moves:
                key = tuple(move) if isinstance(move, list) else move
                node.children[key] = MCTSNode(parent=node, prior=1.0 / len(valid_moves))
        return value

# --- INTERFACE DO STREAMLIT ---

st.set_page_config(page_title="AlphaCheckerZero", page_icon="♟️")

st.title("♟️ AlphaCheckerZero Arena")
st.write("Gabriel Yogi's Neural Network AI")

# 1. Carregar o Modelo (com Cache para ser rápido)
@st.cache_resource
def load_model():
    if not os.path.exists(MODEL_PATH):
        return None
    model = PolicyValueNetwork().to(DEVICE)
    model.load_state_dict(torch.load(MODEL_PATH, map_location=DEVICE))
    model.eval()
    return model

model = load_model()

if model is None:
    st.error(f"Arquivo '{MODEL_PATH}' não encontrado. Por favor, faça upload do arquivo .pth para o Space.")
    st.stop()

# 2. Inicializar o Estado do Jogo
if "board" not in st.session_state:
    game = Checkers()
    st.session_state.board = game.get_initial_board()
    st.session_state.player = 1  # Humano começa (1)
    st.session_state.game_over = False
    st.session_state.message = "Sua vez! Você joga com as Brancas (x)."

game = Checkers()
mcts = MCTS(game, model, sims=150) # Sims ajustado para performance na web

# Função para desenhar o tabuleiro como texto (simples e funcional)
def render_board(board):
    chars = {1: 'x', 2: 'X', -1: 'o', -2: 'O', 0: '.'}
    board_str = "   0 1 2 3 4 5 6 7\n"
    board_str += "  -----------------\n"
    for r_idx, row in enumerate(board):
        board_str += f"{r_idx} | {' '.join(chars[val] for val in row)} |\n"
    board_str += "  -----------------"
    return board_str

# Layout principal
col1, col2 = st.columns([2, 1])

with col1:
    st.text_area("Tabuleiro", render_board(st.session_state.board), height=250, disabled=True, key="board_display")

with col2:
    st.write("### Status")
    st.info(st.session_state.message)

    if st.button("Reiniciar Jogo"):
        st.session_state.board = game.get_initial_board()
        st.session_state.player = 1
        st.session_state.game_over = False
        st.session_state.message = "Jogo reiniciado. Sua vez!"
        st.rerun()

# Lógica do Jogo
if not st.session_state.game_over:
    # Verificar fim de jogo antes de qualquer coisa
    result = game.check_game_over(st.session_state.board, st.session_state.player)
    if result is not None:
        st.session_state.game_over = True
        if result == 1: st.session_state.message = "VOCÊ GANHOU! Parabéns Gabriel!"
        elif result == -1: st.session_state.message = "A IA GANHOU. Mais sorte na próxima."
        else: st.session_state.message = "EMPATE."
        st.rerun()

    # VEZ DO HUMANO (Player 1)
    if st.session_state.player == 1:
        valid_moves = game.get_valid_moves(st.session_state.board, 1)
        
        if not valid_moves:
             # Se não tem movimentos e não deu game over acima, algo estranho aconteceu, mas tratamos como derrota
             st.session_state.game_over = True
             st.session_state.message = "Sem movimentos válidos. Você perdeu."
             st.rerun()

        # Criar lista de strings para o Selectbox
        move_options = [str(m) for m in valid_moves]
        selected_move_str = st.selectbox("Escolha sua jogada:", move_options)
        
        if st.button("Jogar"):
            # Encontrar o movimento original baseado na string
            move_idx = move_options.index(selected_move_str)
            move = valid_moves[move_idx]
            
            # Aplicar movimento
            st.session_state.board = game.apply_move(st.session_state.board, move)
            st.session_state.player = -1 # Passa a vez para IA
            st.session_state.message = "A IA está pensando..."
            st.rerun()

    # VEZ DA IA (Player -1)
    else:
        with st.spinner("A AlphaCheckerZero está pensando..."):
            # Pequeno delay para a interface atualizar e mostrar a mensagem
            time.sleep(0.5) 
            
            valid_moves, policy = mcts.run(np.copy(st.session_state.board), -1)
            
            if not valid_moves:
                 st.session_state.game_over = True
                 st.session_state.message = "A IA não tem movimentos. Você venceu!"
                 st.rerun()

            move = valid_moves[np.argmax(policy)]
            
            st.session_state.board = game.apply_move(st.session_state.board, move)
            st.session_state.player = 1 # Devolve a vez para Humano
            st.session_state.message = f"IA jogou: {move}. Sua vez!"
            st.rerun()

else:
    st.success(st.session_state.message)