File size: 15,022 Bytes
6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 b22f580 4eecc41 b22f580 4eecc41 b22f580 4eecc41 b22f580 4eecc41 b22f580 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 4eecc41 1b737d3 4eecc41 1b737d3 6558ee8 4eecc41 6558ee8 4eecc41 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 4eecc41 1b737d3 b22f580 1b737d3 b22f580 1b737d3 b22f580 1b737d3 6558ee8 1b737d3 4eecc41 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 b22f580 1b737d3 b22f580 1b737d3 b22f580 6558ee8 b22f580 1b737d3 b22f580 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 7b31ea8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 6558ee8 1b737d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
"""
MCP Video Agent - HF Space with Modal Backend + Security
Connects to Modal backend with authentication and rate limiting
"""
import os
import gradio as gr
import time
import hashlib
import base64
from datetime import datetime, timedelta
from collections import defaultdict
# ==========================================
# Security: Rate Limiting
# ==========================================
class RateLimiter:
"""Simple in-memory rate limiter"""
def __init__(self, max_requests_per_hour=10):
self.max_requests = max_requests_per_hour
self.requests = defaultdict(list)
def is_allowed(self, user_id):
"""Check if user is within rate limit"""
now = datetime.now()
cutoff = now - timedelta(hours=1)
# Clean old requests
self.requests[user_id] = [
req_time for req_time in self.requests[user_id]
if req_time > cutoff
]
# Check limit
if len(self.requests[user_id]) >= self.max_requests:
return False
# Record new request
self.requests[user_id].append(now)
return True
def get_remaining(self, user_id):
"""Get remaining requests for user"""
now = datetime.now()
cutoff = now - timedelta(hours=1)
recent = [t for t in self.requests[user_id] if t > cutoff]
return max(0, self.max_requests - len(recent))
# Initialize rate limiter (configurable via environment)
MAX_REQUESTS_PER_HOUR = int(os.environ.get("MAX_REQUESTS_PER_HOUR", "10"))
rate_limiter = RateLimiter(max_requests_per_hour=MAX_REQUESTS_PER_HOUR)
# ==========================================
# Modal Connection
# ==========================================
import modal
def get_modal_function(function_name):
"""Connect to Modal function"""
try:
func = modal.Function.from_name("mcp-video-agent", function_name)
return func
except Exception as e:
print(f"β Failed to connect to Modal: {e}")
return None
def get_modal_volume():
"""Get Modal Volume for file operations"""
try:
vol = modal.Volume.from_name("video-storage")
return vol
except Exception as e:
print(f"β Failed to connect to Modal Volume: {e}")
return None
def upload_to_modal_volume(local_path, remote_filename):
"""Upload file to Modal Volume using SDK batch_upload"""
try:
vol = get_modal_volume()
if vol is None:
return False, "Failed to connect to Modal Volume"
# Use batch_upload with put_file
with vol.batch_upload() as batch:
batch.put_file(local_path, f"/{remote_filename}")
print(f"β
Uploaded to Modal Volume: {remote_filename}")
return True, "Success"
except Exception as e:
print(f"β Upload error: {e}")
return False, str(e)
def download_from_modal_volume(remote_filename, local_path):
"""Download file from Modal Volume using SDK read_file"""
try:
vol = get_modal_volume()
if vol is None:
return False
# Clear file if exists
if os.path.exists(local_path):
os.remove(local_path)
# Read file from volume (read_file returns an iterator of bytes)
with open(local_path, 'wb') as f:
for chunk in vol.read_file(f"/{remote_filename}"):
f.write(chunk)
print(f"β
Downloaded from Modal Volume: {remote_filename}")
return True
except Exception as e:
print(f"β Download error: {e}")
return False
# ==========================================
# Gradio Interface Logic
# ==========================================
# Cache for uploaded videos
uploaded_videos_cache = {}
def process_interaction(user_message, history, video_file, username, request: gr.Request):
"""
Core chatbot logic with Modal backend and security.
"""
if history is None:
history = []
# Get user identifier for rate limiting
user_id = username # Use authenticated username
# β IMMEDIATELY show user message and "thinking" status
history = history + [{"role": "user", "content": user_message}]
history = history + [{"role": "assistant", "content": "β³ Processing your request..."}]
yield history
# Check rate limit
if not rate_limiter.is_allowed(user_id):
remaining = rate_limiter.get_remaining(user_id)
history[-1] = {"role": "assistant", "content": f"β οΈ Rate limit exceeded. You have {remaining} requests remaining this hour. Please try again later."}
yield history
return
# Show remaining requests
remaining = rate_limiter.get_remaining(user_id)
print(f"π‘ User {user_id}: {remaining} requests remaining this hour")
# 1. Check video upload
if video_file is None:
history[-1] = {"role": "assistant", "content": "β οΈ Please upload a video first!"}
yield history
return
local_path = video_file
# Check file size (100MB limit)
file_size_mb = os.path.getsize(local_path) / (1024 * 1024)
if file_size_mb > 100:
history[-1] = {"role": "assistant", "content": f"β Video too large! Size: {file_size_mb:.1f}MB. Please upload a video smaller than 100MB."}
yield history
return
# Generate unique filename
with open(local_path, 'rb') as f:
file_hash = hashlib.md5(f.read()).hexdigest()[:8]
timestamp = int(time.time())
unique_filename = f"video_{timestamp}_{file_hash}.mp4"
cache_key = f"{local_path}_{file_hash}"
# 2. Upload to Modal Volume if needed
if cache_key not in uploaded_videos_cache:
history[-1] = {"role": "assistant", "content": f"π€ Uploading video ({file_size_mb:.1f}MB)... This may take a moment."}
yield history
try:
success, error_msg = upload_to_modal_volume(local_path, unique_filename)
if not success:
history[-1] = {"role": "assistant", "content": f"β Upload failed: {error_msg}"}
yield history
return
uploaded_videos_cache[cache_key] = unique_filename
print(f"β
Video uploaded: {unique_filename}")
# Brief pause to ensure volume sync
time.sleep(1)
except Exception as e:
history[-1] = {"role": "assistant", "content": f"β Upload error: {str(e)}"}
yield history
return
else:
unique_filename = uploaded_videos_cache[cache_key]
history[-1] = {"role": "assistant", "content": "β»οΈ Using cached video..."}
yield history
# 3. Analyze video via Modal
history[-1] = {"role": "assistant", "content": "π€ Analyzing video with Gemini..."}
yield history
try:
analyze_fn = get_modal_function("_internal_analyze_video")
if analyze_fn is None:
history[-1] = {"role": "assistant", "content": "β Failed to connect to Modal backend. Please check deployment."}
yield history
return
text_response = analyze_fn.remote(user_message, video_filename=unique_filename)
except Exception as e:
text_response = f"β Analysis error: {str(e)}"
full_text_response = text_response
# 4. Generate audio if successful
if "β" not in text_response and "β οΈ" not in text_response:
history[-1] = {"role": "assistant", "content": "π£οΈ Generating audio response..."}
yield history
try:
speak_fn = get_modal_function("_internal_speak_text")
if speak_fn is None:
history[-1] = {"role": "assistant", "content": f"β οΈ TTS unavailable.\n\n<div style='background: black; color: lime; padding: 20px; border-radius: 10px; white-space: normal; word-wrap: break-word;'>{full_text_response}</div>"}
yield history
return
audio_filename = f"audio_{unique_filename.replace('.mp4', '.mp3')}"
speak_fn.remote(text_response, audio_filename=audio_filename)
# Download audio using SDK
time.sleep(3) # Wait for TTS to complete
local_audio = f"/tmp/{audio_filename}"
# Remove old file if exists
if os.path.exists(local_audio):
os.remove(local_audio)
max_retries = 3
for retry in range(max_retries):
success = download_from_modal_volume(audio_filename, local_audio)
if success and os.path.exists(local_audio) and os.path.getsize(local_audio) > 1000:
break
# Clean up partial file
if os.path.exists(local_audio):
os.remove(local_audio)
time.sleep(2)
if os.path.exists(local_audio) and os.path.getsize(local_audio) > 1000:
with open(local_audio, 'rb') as f:
audio_bytes = f.read()
audio_base64 = base64.b64encode(audio_bytes).decode()
response_content = f"""ποΈ **Audio Response** ({remaining} requests remaining this hour)
<audio controls autoplay style="width: 100%; margin: 10px 0; background: #f0f0f0; border-radius: 5px;">
<source src="data:audio/mpeg;base64,{audio_base64}" type="audio/mpeg">
</audio>
**π Full Text Response:**
<div style="background-color: #000000; color: #00ff00; padding: 25px; border-radius: 10px; font-family: 'Courier New', monospace; line-height: 1.8; font-size: 14px; white-space: normal; word-wrap: break-word; overflow-wrap: break-word; max-width: 100%;">
{full_text_response}
</div>"""
history[-1] = {"role": "assistant", "content": response_content}
yield history
else:
history[-1] = {"role": "assistant", "content": f"β οΈ Audio generation incomplete.\n\n<div style='background: black; color: lime; padding: 20px; border-radius: 10px; white-space: normal; word-wrap: break-word;'>{full_text_response}</div>"}
yield history
except Exception as e:
history[-1] = {"role": "assistant", "content": f"β Audio error: {str(e)}\n\n<div style='background: black; color: lime; padding: 20px; border-radius: 10px; white-space: normal; word-wrap: break-word;'>{full_text_response}</div>"}
yield history
else:
history[-1] = {"role": "assistant", "content": text_response}
yield history
# ==========================================
# Gradio Interface with Authentication
# ==========================================
# Get credentials from environment
GRADIO_USERNAME = os.environ.get("GRADIO_USERNAME", "admin")
GRADIO_PASSWORD = os.environ.get("GRADIO_PASSWORD")
# Authentication function (optional for Hackathon/Demo)
def authenticate(username, password):
"""Authenticate users - only if password is set"""
if GRADIO_PASSWORD is None:
# No password set, allow anyone (good for Hackathon/Demo)
return True
return username == GRADIO_USERNAME and password == GRADIO_PASSWORD
with gr.Blocks(title="π₯ MCP Video Agent") as demo:
gr.Markdown("# π₯ MCP Video Agent")
gr.Markdown("**π MCP 1st Birthday Hackathon** | Track: MCP in Action (Consumer & Creative)")
gr.Markdown(f"""
### β‘ Key Innovation: Smart Frame Caching
**First Query**: Video is analyzed deeply and cached (8-12 seconds)
**Follow-up Queries**: Instant responses using cached context (2-3 seconds, 90% cost reduction!)
**Cache Duration**: 1 hour - ask multiple questions without reprocessing
---
### π How to Use
1. **Upload** a video (MP4, max 100MB)
2. **Ask** your first question - video will be analyzed and cached
3. **Continue** asking follow-up questions - experience the speed boost!
4. **Listen** to voice responses (powered by ElevenLabs TTS)
**Pro Tip**: After your first question, try asking 2-3 more to see how fast cached responses are!
---
### π‘οΈ Fair Usage Policy
- **Rate Limit**: {MAX_REQUESTS_PER_HOUR} requests per hour per user
- **Video Size**: Max 100MB
- **Shared Resources**: This is a Hackathon demo - please use responsibly
---
### π§ Tech Stack
- **Gemini 2.5 Flash**: Multimodal video analysis + Context Caching
- **Modal**: Serverless backend + Persistent storage
- **ElevenLabs**: Neural text-to-speech
- **Gradio 6.0**: Interactive UI
**Sponsor Tech Used**: β
Modal | β
Google Gemini | β
ElevenLabs
""")
username_state = gr.State("")
with gr.Row():
with gr.Column(scale=1):
video_input = gr.Video(label="πΉ Upload Video (MP4)", sources=["upload"])
gr.Markdown("**Supported:** MP4, max 100MB")
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="π¬ Conversation", height=500)
msg = gr.Textbox(
label="Your question...",
placeholder="What is this video about?",
lines=2
)
submit_btn = gr.Button("π Send", variant="primary")
# Examples
gr.Examples(
examples=[
["What is happening in this video?"],
["Describe the main content of this video."],
["What are the key visual elements?"],
],
inputs=msg
)
# Get username from Gradio request
def set_username(request: gr.Request):
return request.username if hasattr(request, 'username') else "anonymous"
demo.load(set_username, None, username_state)
# Event handlers
submit_btn.click(
process_interaction,
inputs=[msg, chatbot, video_input, username_state],
outputs=[chatbot]
)
msg.submit(
process_interaction,
inputs=[msg, chatbot, video_input, username_state],
outputs=[chatbot]
)
# ==========================================
# Launch with Authentication
# ==========================================
if __name__ == "__main__":
# Optional authentication (for Hackathon, usually not needed)
auth_config = None
if GRADIO_PASSWORD:
auth_config = authenticate
print(f"π Authentication enabled. Username: {GRADIO_USERNAME}")
else:
print("π Public access enabled (no authentication required)")
print(" Rate limiting active to prevent abuse")
print(f" Limit: {MAX_REQUESTS_PER_HOUR} requests/hour per user")
demo.launch(
auth=auth_config,
show_error=True,
share=False
)
|