""" DS-STAR: Multi-Agent System for Data Science Tasks This is the main entry point for the refactored DS-STAR system. All agents are modularized and can be tested independently. Usage: python main_new.py Or customize: from src.graph import run_ds_star from src.config import get_llm llm = get_llm(provider="google", model="gemini-1.5-flash") result = run_ds_star("Your question here", llm, max_iterations=20) """ import sys from src.config import DEFAULT_CONFIG, get_llm from src.graph import run_ds_star def main(): """ Main execution function for DS-STAR. """ # Configuration query = "What percentage of transactions use credit cards?" max_iterations = DEFAULT_CONFIG["max_iterations"] provider = DEFAULT_CONFIG["provider"] model = DEFAULT_CONFIG["model"] print("Initializing DS-STAR Multi-Agent System...") print(f"Provider: {provider}") print(f"Model: {model}") print() try: # Initialize LLM llm = get_llm( provider=provider, model=model, temperature=DEFAULT_CONFIG["temperature"] ) # Run DS-STAR workflow final_state = run_ds_star( query=query, llm=llm, max_iterations=max_iterations, thread_id="ds-star-main-session", ) if final_state: print("\n✅ Workflow completed successfully!") return 0 else: print("\n❌ Workflow failed!") return 1 except Exception as e: print(f"\n❌ Fatal error: {str(e)}") import traceback traceback.print_exc() return 1 if __name__ == "__main__": sys.exit(main())