Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- .env.example +6 -0
- .github/workflows/update_space.yml +28 -0
- .gitignore +13 -0
- .python-version +1 -0
- README.md +277 -12
- app.py +1406 -0
- data/cards_data.csv +0 -0
- main.py +69 -0
- pyproject.toml +27 -0
- requirements.txt +18 -0
- src/__init__.py +1 -0
- src/agents/__init__.py +24 -0
- src/agents/analyzer_agent.py +167 -0
- src/agents/coder_agent.py +174 -0
- src/agents/finalyzer_agent.py +162 -0
- src/agents/planner_agent.py +155 -0
- src/agents/router_agent.py +220 -0
- src/agents/verifier_agent.py +143 -0
- src/config/__init__.py +5 -0
- src/config/llm_config.py +90 -0
- src/graph.py +232 -0
- src/utils/__init__.py +16 -0
- src/utils/code_execution.py +129 -0
- src/utils/formatters.py +89 -0
- src/utils/state.py +56 -0
- tests/test_complete_workflow.py +112 -0
- uv.lock +0 -0
.env.example
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
LLM_PROVIDER=
|
| 2 |
+
LLM_BASE_URL=
|
| 3 |
+
LLM_MODEL=
|
| 4 |
+
LLM_API_KEY=
|
| 5 |
+
GOOGLE_API_KEY=
|
| 6 |
+
ANTHROPIC_API_KEY=""
|
.github/workflows/update_space.yml
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: Run Python script
|
| 2 |
+
|
| 3 |
+
on:
|
| 4 |
+
push:
|
| 5 |
+
branches:
|
| 6 |
+
- main
|
| 7 |
+
|
| 8 |
+
jobs:
|
| 9 |
+
build:
|
| 10 |
+
runs-on: ubuntu-latest
|
| 11 |
+
|
| 12 |
+
steps:
|
| 13 |
+
- name: Checkout
|
| 14 |
+
uses: actions/checkout@v2
|
| 15 |
+
|
| 16 |
+
- name: Set up Python
|
| 17 |
+
uses: actions/setup-python@v2
|
| 18 |
+
with:
|
| 19 |
+
python-version: '3.9'
|
| 20 |
+
|
| 21 |
+
- name: Install Gradio
|
| 22 |
+
run: python -m pip install gradio
|
| 23 |
+
|
| 24 |
+
- name: Log in to Hugging Face
|
| 25 |
+
run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
|
| 26 |
+
|
| 27 |
+
- name: Deploy to Spaces
|
| 28 |
+
run: gradio deploy
|
.gitignore
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python-generated files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[oc]
|
| 4 |
+
build/
|
| 5 |
+
dist/
|
| 6 |
+
wheels/
|
| 7 |
+
*.egg-info
|
| 8 |
+
|
| 9 |
+
# Virtual environments
|
| 10 |
+
.venv
|
| 11 |
+
|
| 12 |
+
# .env files
|
| 13 |
+
.env
|
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.13
|
README.md
CHANGED
|
@@ -1,12 +1,277 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: DS
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 6.0.1
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: DS-STAR
|
| 3 |
+
emoji: ✨
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: indigo
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 6.0.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
short_description: Multi-Agent AI System for Automated Data Science Tasks
|
| 12 |
+
tags:
|
| 13 |
+
- mcp-in-action-track-consumer
|
| 14 |
+
- langgraph
|
| 15 |
+
- multi-agent
|
| 16 |
+
- data-science
|
| 17 |
+
- automation
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
<div align="center">
|
| 21 |
+
|
| 22 |
+
# ✨ DS-STAR
|
| 23 |
+
|
| 24 |
+
### **D**ata **S**cience - **S**tructured **T**ask **A**nalysis and **R**esolution
|
| 25 |
+
|
| 26 |
+
[](https://huggingface.co/spaces/Anurag-Deo/DS-STAR)
|
| 27 |
+
[](https://opensource.org/licenses/MIT)
|
| 28 |
+
[](https://www.python.org/downloads/)
|
| 29 |
+
[](https://langchain-ai.github.io/langgraph/)
|
| 30 |
+
|
| 31 |
+
**A powerful multi-agent AI system that automates data science tasks through intelligent collaboration.**
|
| 32 |
+
|
| 33 |
+
[🚀 Try Demo](https://huggingface.co/spaces/Anurag-Deo/DS-STAR) • [📖 Documentation](#-usage) • [🐛 Report Bug](https://github.com/Anurag-Deo/DS-STAR/issues)
|
| 34 |
+
|
| 35 |
+
</div>
|
| 36 |
+
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
## 🎯 What is DS-STAR?
|
| 40 |
+
|
| 41 |
+
DS-STAR is a **multi-agent AI system** built with LangGraph that takes your natural language questions about data and automatically:
|
| 42 |
+
|
| 43 |
+
1. 📊 **Analyzes** your data files to understand their structure
|
| 44 |
+
2. 📝 **Plans** a step-by-step approach to answer your question
|
| 45 |
+
3. 💻 **Generates** Python code to perform the analysis
|
| 46 |
+
4. ✅ **Verifies** the solution meets your requirements
|
| 47 |
+
5. 🔄 **Iterates** with smart backtracking if needed
|
| 48 |
+
6. 🎯 **Delivers** polished, accurate results
|
| 49 |
+
|
| 50 |
+
> **Built for the 🤗 Hugging Face MCP 1st Birthday Hackathon**
|
| 51 |
+
|
| 52 |
+
---
|
| 53 |
+
|
| 54 |
+
## ✨ Key Features
|
| 55 |
+
|
| 56 |
+
| Feature | Description |
|
| 57 |
+
|---------|-------------|
|
| 58 |
+
| 🤖 **Multi-Agent Architecture** | Six specialized agents working in harmony |
|
| 59 |
+
| 🔄 **Iterative Refinement** | Automatically improves solutions through multiple cycles |
|
| 60 |
+
| 🔙 **Smart Backtracking** | Intelligently reverts failed approaches |
|
| 61 |
+
| 📊 **Auto Data Analysis** | Understands your data structure automatically |
|
| 62 |
+
| 💻 **Code Generation** | Produces clean, executable Python code |
|
| 63 |
+
| 🌐 **Multi-Provider Support** | Works with Google, OpenAI, Anthropic, or custom APIs |
|
| 64 |
+
| 🎨 **Modern UI** | Beautiful dark-themed Gradio interface |
|
| 65 |
+
|
| 66 |
+
---
|
| 67 |
+
|
| 68 |
+
## 🏗️ Architecture
|
| 69 |
+
|
| 70 |
+
DS-STAR uses a sophisticated multi-agent workflow powered by LangGraph:
|
| 71 |
+
|
| 72 |
+
```
|
| 73 |
+
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
|
| 74 |
+
│ Analyzer │────▶│ Planner │────▶│ Coder │
|
| 75 |
+
│ 📊 Analyze │ │ 📝 Plan │ │ 💻 Code │
|
| 76 |
+
└─────────────┘ └─────────────┘ └─────────────┘
|
| 77 |
+
│
|
| 78 |
+
▼
|
| 79 |
+
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
|
| 80 |
+
│ Finalyzer │◀────│ Router │◀────│ Verifier │
|
| 81 |
+
│ 🎯 Polish │ │ 🔀 Route │ │ ✅ Verify │
|
| 82 |
+
└─────────────┘ └─────────────┘ └─────────────┘
|
| 83 |
+
│
|
| 84 |
+
▼
|
| 85 |
+
┌─────────────┐
|
| 86 |
+
│ Backtrack │
|
| 87 |
+
│ ↩️ Retry │
|
| 88 |
+
└─────────────┘
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
### Agent Roles
|
| 92 |
+
|
| 93 |
+
| Agent | Role | Description |
|
| 94 |
+
|-------|------|-------------|
|
| 95 |
+
| **Analyzer** | 📊 | Examines all data files and creates detailed descriptions |
|
| 96 |
+
| **Planner** | 📝 | Generates the next logical step in the solution |
|
| 97 |
+
| **Coder** | 💻 | Implements the plan as executable Python code |
|
| 98 |
+
| **Verifier** | ✅ | Validates if the solution answers the query |
|
| 99 |
+
| **Router** | 🔀 | Decides to continue, add steps, or backtrack |
|
| 100 |
+
| **Finalyzer** | 🎯 | Polishes and formats the final output |
|
| 101 |
+
|
| 102 |
+
---
|
| 103 |
+
|
| 104 |
+
## 🚀 Quick Start
|
| 105 |
+
|
| 106 |
+
### Online Demo
|
| 107 |
+
|
| 108 |
+
Try DS-STAR instantly on Hugging Face Spaces:
|
| 109 |
+
|
| 110 |
+
👉 **[Launch DS-STAR Demo](https://huggingface.co/spaces/Anurag-Deo/DS-STAR)**
|
| 111 |
+
|
| 112 |
+
### Local Installation
|
| 113 |
+
|
| 114 |
+
```bash
|
| 115 |
+
# Clone the repository
|
| 116 |
+
git clone https://github.com/Anurag-Deo/DS-STAR.git
|
| 117 |
+
cd DS-STAR
|
| 118 |
+
|
| 119 |
+
# Create virtual environment
|
| 120 |
+
python -m venv .venv
|
| 121 |
+
source .venv/bin/activate # On Windows: .venv\Scripts\activate
|
| 122 |
+
|
| 123 |
+
# Install dependencies
|
| 124 |
+
pip install -r requirements.txt
|
| 125 |
+
|
| 126 |
+
# Run the application
|
| 127 |
+
python app.py
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
Then open http://localhost:7860 in your browser.
|
| 131 |
+
|
| 132 |
+
---
|
| 133 |
+
|
| 134 |
+
## 💡 Usage
|
| 135 |
+
|
| 136 |
+
### Web Interface
|
| 137 |
+
|
| 138 |
+
1. **Select Provider** — Choose Google, OpenAI, Anthropic, or Custom
|
| 139 |
+
2. **Enter API Key** — Or set via environment variable
|
| 140 |
+
3. **Upload Data** — Drop your CSV, JSON, Excel, or Parquet files
|
| 141 |
+
4. **Ask Questions** — Type your data science question
|
| 142 |
+
5. **Run Analysis** — Click "Run Analysis" and watch the magic!
|
| 143 |
+
|
| 144 |
+
### Example Queries
|
| 145 |
+
|
| 146 |
+
```
|
| 147 |
+
📊 "What percentage of transactions use credit cards?"
|
| 148 |
+
📈 "Show me the distribution of transaction amounts"
|
| 149 |
+
🏆 "Which category has the highest total sales?"
|
| 150 |
+
🔗 "Find correlations between numeric columns"
|
| 151 |
+
📋 "Create a summary statistics report"
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
### Python API
|
| 155 |
+
|
| 156 |
+
```python
|
| 157 |
+
from src.graph import run_ds_star
|
| 158 |
+
from src.config import get_llm
|
| 159 |
+
|
| 160 |
+
# Initialize LLM
|
| 161 |
+
llm = get_llm(provider="google", model="gemini-2.0-flash")
|
| 162 |
+
|
| 163 |
+
# Run DS-STAR
|
| 164 |
+
result = run_ds_star(
|
| 165 |
+
query="What is the average transaction amount?",
|
| 166 |
+
llm=llm,
|
| 167 |
+
max_iterations=20
|
| 168 |
+
)
|
| 169 |
+
```
|
| 170 |
+
|
| 171 |
+
---
|
| 172 |
+
|
| 173 |
+
## 🔌 Supported Providers
|
| 174 |
+
|
| 175 |
+
| Provider | Models | Environment Variable |
|
| 176 |
+
|----------|--------|---------------------|
|
| 177 |
+
| **Google** | Gemini 2.0, 1.5 Pro, 1.5 Flash | `GOOGLE_API_KEY` |
|
| 178 |
+
| **OpenAI** | GPT-4o, GPT-4, GPT-3.5 | `OPENAI_API_KEY` |
|
| 179 |
+
| **Anthropic** | Claude 3.5, Claude 3 | `ANTHROPIC_API_KEY` |
|
| 180 |
+
| **Custom** | Any OpenAI-compatible API | Custom Base URL |
|
| 181 |
+
|
| 182 |
+
---
|
| 183 |
+
|
| 184 |
+
## 📁 Project Structure
|
| 185 |
+
|
| 186 |
+
```
|
| 187 |
+
DS-STAR/
|
| 188 |
+
├── 📱 app.py # Gradio web application
|
| 189 |
+
├── 📜 main.py # CLI entry point
|
| 190 |
+
├── 📋 requirements.txt # Dependencies
|
| 191 |
+
├── 📂 src/
|
| 192 |
+
│ ├── 🤖 agents/ # Agent implementations
|
| 193 |
+
│ │ ├── analyzer_agent.py
|
| 194 |
+
│ │ ├── planner_agent.py
|
| 195 |
+
│ │ ├── coder_agent.py
|
| 196 |
+
│ │ ├── verifier_agent.py
|
| 197 |
+
│ │ ├── router_agent.py
|
| 198 |
+
│ │ └── finalyzer_agent.py
|
| 199 |
+
│ ├── 🔧 utils/ # Shared utilities
|
| 200 |
+
│ │ ├── state.py # State schema
|
| 201 |
+
│ │ ├── formatters.py # Text formatting
|
| 202 |
+
│ │ └── code_execution.py # Safe code execution
|
| 203 |
+
│ ├── ⚙️ config/ # Configuration
|
| 204 |
+
│ │ └── llm_config.py # LLM setup
|
| 205 |
+
│ └── 🔄 graph.py # LangGraph workflow
|
| 206 |
+
├── 🧪 tests/ # Test suite
|
| 207 |
+
└── 📊 data/ # Sample data files
|
| 208 |
+
```
|
| 209 |
+
|
| 210 |
+
---
|
| 211 |
+
|
| 212 |
+
## 🧪 Testing
|
| 213 |
+
|
| 214 |
+
```bash
|
| 215 |
+
# Run complete workflow test
|
| 216 |
+
python tests/test_complete_workflow.py
|
| 217 |
+
|
| 218 |
+
# Test individual agents
|
| 219 |
+
python -c "from src.agents import test_analyzer; test_analyzer(llm)"
|
| 220 |
+
```
|
| 221 |
+
|
| 222 |
+
---
|
| 223 |
+
|
| 224 |
+
## 🛠️ Configuration
|
| 225 |
+
|
| 226 |
+
### Environment Variables
|
| 227 |
+
|
| 228 |
+
```bash
|
| 229 |
+
# Set your API keys
|
| 230 |
+
export GOOGLE_API_KEY="your-google-api-key"
|
| 231 |
+
export OPENAI_API_KEY="your-openai-api-key"
|
| 232 |
+
export ANTHROPIC_API_KEY="your-anthropic-api-key"
|
| 233 |
+
```
|
| 234 |
+
|
| 235 |
+
### Advanced Settings
|
| 236 |
+
|
| 237 |
+
| Setting | Default | Description |
|
| 238 |
+
|---------|---------|-------------|
|
| 239 |
+
| Max Iterations | 20 | Maximum refinement cycles |
|
| 240 |
+
| Temperature | 0.0 | LLM temperature (0 = deterministic) |
|
| 241 |
+
|
| 242 |
+
---
|
| 243 |
+
|
| 244 |
+
## 🤝 Contributing
|
| 245 |
+
|
| 246 |
+
Contributions are welcome! Please feel free to submit a Pull Request.
|
| 247 |
+
|
| 248 |
+
1. Fork the repository
|
| 249 |
+
2. Create your feature branch (`git checkout -b feature/AmazingFeature`)
|
| 250 |
+
3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
|
| 251 |
+
4. Push to the branch (`git push origin feature/AmazingFeature`)
|
| 252 |
+
5. Open a Pull Request
|
| 253 |
+
|
| 254 |
+
---
|
| 255 |
+
|
| 256 |
+
## 📄 License
|
| 257 |
+
|
| 258 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
| 259 |
+
|
| 260 |
+
---
|
| 261 |
+
|
| 262 |
+
## 🙏 Acknowledgments
|
| 263 |
+
|
| 264 |
+
- Built with [LangGraph](https://langchain-ai.github.io/langgraph/) by LangChain
|
| 265 |
+
- UI powered by [Gradio](https://gradio.app/)
|
| 266 |
+
- Created for the [🤗 Hugging Face MCP 1st Birthday Hackathon](https://huggingface.co/)
|
| 267 |
+
|
| 268 |
+
---
|
| 269 |
+
|
| 270 |
+
<div align="center">
|
| 271 |
+
|
| 272 |
+
**Made with ❤️ by [Anurag Deo](https://github.com/Anurag-Deo)**
|
| 273 |
+
|
| 274 |
+
⭐ Star this repo if you find it helpful!
|
| 275 |
+
|
| 276 |
+
</div>
|
| 277 |
+
|
app.py
ADDED
|
@@ -0,0 +1,1406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
DS-STAR Gradio Application
|
| 3 |
+
A modern web interface for the DS-STAR Multi-Agent Data Science System.
|
| 4 |
+
|
| 5 |
+
Created for the Hugging Face MCP 1st Birthday Hackathon.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import shutil
|
| 10 |
+
from typing import Generator
|
| 11 |
+
|
| 12 |
+
import gradio as gr
|
| 13 |
+
import httpx
|
| 14 |
+
|
| 15 |
+
from src.config import get_llm
|
| 16 |
+
from src.graph import build_ds_star_graph, create_initial_state
|
| 17 |
+
|
| 18 |
+
# ==================== MODEL FETCHING ====================
|
| 19 |
+
|
| 20 |
+
# Store fetch status for UI feedback
|
| 21 |
+
_last_fetch_status = {"success": False, "message": "", "from_api": False}
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def fetch_google_models(api_key: str | None = None) -> tuple[list[str], str]:
|
| 25 |
+
"""Fetch available models from Google Gemini API. Returns (models, status_message)."""
|
| 26 |
+
api_key = api_key or os.getenv("GOOGLE_API_KEY", "")
|
| 27 |
+
fallback = [
|
| 28 |
+
"gemini-2.0-flash",
|
| 29 |
+
"gemini-1.5-pro",
|
| 30 |
+
"gemini-1.5-flash",
|
| 31 |
+
"gemini-1.0-pro",
|
| 32 |
+
]
|
| 33 |
+
|
| 34 |
+
if not api_key:
|
| 35 |
+
return fallback, "⚠️ No API key - showing default models"
|
| 36 |
+
|
| 37 |
+
try:
|
| 38 |
+
url = f"https://generativelanguage.googleapis.com/v1beta/models?key={api_key}"
|
| 39 |
+
response = httpx.get(url, timeout=15)
|
| 40 |
+
|
| 41 |
+
if response.status_code == 200:
|
| 42 |
+
data = response.json()
|
| 43 |
+
models = []
|
| 44 |
+
for model in data.get("models", []):
|
| 45 |
+
name = model.get("name", "").replace("models/", "")
|
| 46 |
+
# Filter for chat/generate models
|
| 47 |
+
if "generateContent" in model.get("supportedGenerationMethods", []):
|
| 48 |
+
models.append(name)
|
| 49 |
+
if models:
|
| 50 |
+
return sorted(
|
| 51 |
+
models, reverse=True
|
| 52 |
+
), f"✅ Fetched {len(models)} models from API"
|
| 53 |
+
return fallback, "⚠️ No compatible models found - showing defaults"
|
| 54 |
+
elif response.status_code == 400:
|
| 55 |
+
return fallback, "❌ Invalid API key format"
|
| 56 |
+
elif response.status_code == 403:
|
| 57 |
+
return fallback, "❌ API key invalid or expired"
|
| 58 |
+
else:
|
| 59 |
+
return fallback, f"❌ API error: {response.status_code}"
|
| 60 |
+
except httpx.TimeoutException:
|
| 61 |
+
return fallback, "❌ Request timed out"
|
| 62 |
+
except httpx.ConnectError:
|
| 63 |
+
return fallback, "❌ Connection failed - check internet"
|
| 64 |
+
except Exception as e:
|
| 65 |
+
return fallback, f"❌ Error: {str(e)[:50]}"
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def fetch_openai_models(
|
| 69 |
+
api_key: str | None = None, base_url: str | None = None
|
| 70 |
+
) -> tuple[list[str], str]:
|
| 71 |
+
"""Fetch available models from OpenAI API or compatible endpoint. Returns (models, status_message)."""
|
| 72 |
+
api_key = api_key or os.getenv("OPENAI_API_KEY", "")
|
| 73 |
+
base_url = base_url or "https://api.openai.com/v1"
|
| 74 |
+
fallback = ["gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4", "gpt-3.5-turbo"]
|
| 75 |
+
|
| 76 |
+
if not api_key:
|
| 77 |
+
return fallback, "⚠️ No API key - showing default models"
|
| 78 |
+
|
| 79 |
+
try:
|
| 80 |
+
headers = {"Authorization": f"Bearer {api_key}"}
|
| 81 |
+
endpoint = f"{base_url.rstrip('/')}/models"
|
| 82 |
+
response = httpx.get(endpoint, headers=headers, timeout=15)
|
| 83 |
+
|
| 84 |
+
if response.status_code == 200:
|
| 85 |
+
data = response.json()
|
| 86 |
+
models = []
|
| 87 |
+
for model in data.get("data", []):
|
| 88 |
+
model_id = model.get("id", "")
|
| 89 |
+
# For OpenAI, filter chat models; for custom endpoints, include all
|
| 90 |
+
if base_url != "https://api.openai.com/v1":
|
| 91 |
+
models.append(model_id)
|
| 92 |
+
elif model_id.startswith(("gpt-", "o1", "o3", "o4", "chatgpt")):
|
| 93 |
+
models.append(model_id)
|
| 94 |
+
if models:
|
| 95 |
+
return sorted(
|
| 96 |
+
models, reverse=True
|
| 97 |
+
), f"✅ Fetched {len(models)} models from API"
|
| 98 |
+
return fallback, "⚠️ No chat models found - showing defaults"
|
| 99 |
+
elif response.status_code == 401:
|
| 100 |
+
return fallback, "❌ Invalid API key"
|
| 101 |
+
elif response.status_code == 403:
|
| 102 |
+
return fallback, "❌ Access denied"
|
| 103 |
+
else:
|
| 104 |
+
return fallback, f"❌ API error: {response.status_code}"
|
| 105 |
+
except httpx.TimeoutException:
|
| 106 |
+
return fallback, "❌ Request timed out"
|
| 107 |
+
except httpx.ConnectError:
|
| 108 |
+
return fallback, "❌ Connection failed - check URL/internet"
|
| 109 |
+
except Exception as e:
|
| 110 |
+
return fallback, f"❌ Error: {str(e)[:50]}"
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def fetch_anthropic_models(api_key: str | None = None) -> tuple[list[str], str]:
|
| 114 |
+
"""Fetch available models from Anthropic API. Returns (models, status_message)."""
|
| 115 |
+
api_key = api_key or os.getenv("ANTHROPIC_API_KEY", "")
|
| 116 |
+
fallback = [
|
| 117 |
+
"claude-sonnet-4-20250514",
|
| 118 |
+
"claude-3-5-sonnet-20241022",
|
| 119 |
+
"claude-3-5-haiku-20241022",
|
| 120 |
+
"claude-3-opus-20240229",
|
| 121 |
+
]
|
| 122 |
+
|
| 123 |
+
if not api_key:
|
| 124 |
+
return fallback, "⚠️ No API key - showing default models"
|
| 125 |
+
|
| 126 |
+
try:
|
| 127 |
+
headers = {"x-api-key": api_key, "anthropic-version": "2023-06-01"}
|
| 128 |
+
response = httpx.get(
|
| 129 |
+
"https://api.anthropic.com/v1/models", headers=headers, timeout=15
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
if response.status_code == 200:
|
| 133 |
+
data = response.json()
|
| 134 |
+
models = [
|
| 135 |
+
model.get("id", "") for model in data.get("data", []) if model.get("id")
|
| 136 |
+
]
|
| 137 |
+
if models:
|
| 138 |
+
return sorted(
|
| 139 |
+
models, reverse=True
|
| 140 |
+
), f"✅ Fetched {len(models)} models from API"
|
| 141 |
+
return fallback, "⚠️ No models found - showing defaults"
|
| 142 |
+
elif response.status_code == 401:
|
| 143 |
+
return fallback, "❌ Invalid API key"
|
| 144 |
+
elif response.status_code == 403:
|
| 145 |
+
return fallback, "❌ Access denied"
|
| 146 |
+
else:
|
| 147 |
+
# Anthropic may not have a public models endpoint, use fallback
|
| 148 |
+
return fallback, "ℹ️ Using known Anthropic models"
|
| 149 |
+
except httpx.TimeoutException:
|
| 150 |
+
return fallback, "❌ Request timed out"
|
| 151 |
+
except httpx.ConnectError:
|
| 152 |
+
return fallback, "❌ Connection failed"
|
| 153 |
+
except Exception as e:
|
| 154 |
+
return fallback, f"❌ Error: {str(e)[:50]}"
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def fetch_models_for_provider(
|
| 158 |
+
provider: str, api_key: str | None = None, base_url: str | None = None
|
| 159 |
+
) -> tuple[list[str], str]:
|
| 160 |
+
"""Fetch models for the given provider. Returns (models, status_message)."""
|
| 161 |
+
if provider == "google":
|
| 162 |
+
return fetch_google_models(api_key)
|
| 163 |
+
elif provider == "openai":
|
| 164 |
+
return fetch_openai_models(api_key)
|
| 165 |
+
elif provider == "anthropic":
|
| 166 |
+
return fetch_anthropic_models(api_key)
|
| 167 |
+
elif provider == "custom":
|
| 168 |
+
if not base_url:
|
| 169 |
+
return [], "❌ Please enter a Base URL for custom provider"
|
| 170 |
+
return fetch_openai_models(api_key, base_url)
|
| 171 |
+
return [], "❌ Unknown provider"
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
# ==================== CUSTOM THEME ====================
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def create_ds_star_theme():
|
| 178 |
+
"""Create a modern dark theme for DS-STAR."""
|
| 179 |
+
return gr.themes.Base(
|
| 180 |
+
primary_hue=gr.themes.colors.violet,
|
| 181 |
+
secondary_hue=gr.themes.colors.purple,
|
| 182 |
+
neutral_hue=gr.themes.colors.slate,
|
| 183 |
+
font=[
|
| 184 |
+
gr.themes.GoogleFont("Inter"),
|
| 185 |
+
"ui-sans-serif",
|
| 186 |
+
"system-ui",
|
| 187 |
+
"sans-serif",
|
| 188 |
+
],
|
| 189 |
+
font_mono=[gr.themes.GoogleFont("JetBrains Mono"), "ui-monospace", "monospace"],
|
| 190 |
+
).set(
|
| 191 |
+
# Body - Dark background
|
| 192 |
+
body_background_fill="#0a0a0f",
|
| 193 |
+
body_background_fill_dark="#0a0a0f",
|
| 194 |
+
body_text_color="#e4e4e7",
|
| 195 |
+
body_text_color_dark="#e4e4e7",
|
| 196 |
+
# Buttons
|
| 197 |
+
button_primary_background_fill="linear-gradient(135deg, #7c3aed 0%, #8b5cf6 100%)",
|
| 198 |
+
button_primary_background_fill_hover="linear-gradient(135deg, #6d28d9 0%, #7c3aed 100%)",
|
| 199 |
+
button_primary_text_color="white",
|
| 200 |
+
button_primary_border_color="transparent",
|
| 201 |
+
button_secondary_background_fill="transparent",
|
| 202 |
+
button_secondary_background_fill_hover="rgba(139, 92, 246, 0.15)",
|
| 203 |
+
button_secondary_border_color="#7c3aed",
|
| 204 |
+
button_secondary_text_color="#a78bfa",
|
| 205 |
+
# Blocks
|
| 206 |
+
block_background_fill="#18181b",
|
| 207 |
+
block_background_fill_dark="#18181b",
|
| 208 |
+
block_border_width="1px",
|
| 209 |
+
block_border_color="#27272a",
|
| 210 |
+
block_border_color_dark="#27272a",
|
| 211 |
+
block_shadow="none",
|
| 212 |
+
block_title_text_weight="600",
|
| 213 |
+
block_title_text_size="*text_md",
|
| 214 |
+
block_label_text_weight="500",
|
| 215 |
+
block_label_text_size="*text_sm",
|
| 216 |
+
block_radius="12px",
|
| 217 |
+
block_padding="16px",
|
| 218 |
+
# Inputs
|
| 219 |
+
input_background_fill="#27272a",
|
| 220 |
+
input_background_fill_dark="#27272a",
|
| 221 |
+
input_border_color="#3f3f46",
|
| 222 |
+
input_border_color_dark="#3f3f46",
|
| 223 |
+
input_border_width="1px",
|
| 224 |
+
input_shadow="none",
|
| 225 |
+
input_radius="8px",
|
| 226 |
+
# Panels
|
| 227 |
+
panel_background_fill="#18181b",
|
| 228 |
+
panel_background_fill_dark="#18181b",
|
| 229 |
+
panel_border_width="0px",
|
| 230 |
+
# Spacing
|
| 231 |
+
layout_gap="16px",
|
| 232 |
+
# Shadows
|
| 233 |
+
shadow_drop="none",
|
| 234 |
+
shadow_drop_lg="none",
|
| 235 |
+
# Checkbox
|
| 236 |
+
checkbox_background_color="#27272a",
|
| 237 |
+
checkbox_background_color_dark="#27272a",
|
| 238 |
+
checkbox_border_color="#3f3f46",
|
| 239 |
+
checkbox_border_color_dark="#3f3f46",
|
| 240 |
+
checkbox_label_text_color="#a1a1aa",
|
| 241 |
+
checkbox_label_text_color_dark="#a1a1aa",
|
| 242 |
+
# Slider
|
| 243 |
+
slider_color="#7c3aed",
|
| 244 |
+
slider_color_dark="#8b5cf6",
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
# ==================== CSS STYLING ====================
|
| 249 |
+
|
| 250 |
+
CUSTOM_CSS = """
|
| 251 |
+
/* Modern Font Import */
|
| 252 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800&display=swap');
|
| 253 |
+
@import url('https://fonts.googleapis.com/css2?family=JetBrains+Mono:wght@400;500;600&display=swap');
|
| 254 |
+
|
| 255 |
+
/* Root variables */
|
| 256 |
+
:root {
|
| 257 |
+
--bg-primary: #0a0a0f;
|
| 258 |
+
--bg-secondary: #18181b;
|
| 259 |
+
--bg-tertiary: #27272a;
|
| 260 |
+
--border-color: #3f3f46;
|
| 261 |
+
--text-primary: #fafafa;
|
| 262 |
+
--text-secondary: #a1a1aa;
|
| 263 |
+
--text-muted: #71717a;
|
| 264 |
+
--accent-primary: #8b5cf6;
|
| 265 |
+
--accent-secondary: #7c3aed;
|
| 266 |
+
--accent-glow: rgba(139, 92, 246, 0.3);
|
| 267 |
+
--success: #22c55e;
|
| 268 |
+
--error: #ef4444;
|
| 269 |
+
}
|
| 270 |
+
|
| 271 |
+
/* Main container - Dark background */
|
| 272 |
+
.gradio-container {
|
| 273 |
+
max-width: 1400px !important;
|
| 274 |
+
margin: 0 auto !important;
|
| 275 |
+
padding: 32px !important;
|
| 276 |
+
font-family: 'Inter', sans-serif !important;
|
| 277 |
+
background: var(--bg-primary) !important;
|
| 278 |
+
min-height: 100vh;
|
| 279 |
+
}
|
| 280 |
+
|
| 281 |
+
/* Remove all default shadows and borders for cleaner look */
|
| 282 |
+
.gradio-container * {
|
| 283 |
+
box-shadow: none !important;
|
| 284 |
+
}
|
| 285 |
+
|
| 286 |
+
/* ===== HEADER ===== */
|
| 287 |
+
.header-section {
|
| 288 |
+
background: linear-gradient(135deg, #1e1b4b 0%, #312e81 50%, #3730a3 100%);
|
| 289 |
+
border-radius: 16px;
|
| 290 |
+
padding: 40px 32px;
|
| 291 |
+
margin-bottom: 24px;
|
| 292 |
+
border: 1px solid #4338ca;
|
| 293 |
+
position: relative;
|
| 294 |
+
overflow: hidden;
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
.header-section::before {
|
| 298 |
+
content: '';
|
| 299 |
+
position: absolute;
|
| 300 |
+
top: 0;
|
| 301 |
+
right: 0;
|
| 302 |
+
width: 40%;
|
| 303 |
+
height: 100%;
|
| 304 |
+
background: radial-gradient(ellipse at top right, rgba(139, 92, 246, 0.3), transparent 70%);
|
| 305 |
+
}
|
| 306 |
+
|
| 307 |
+
.header-content {
|
| 308 |
+
position: relative;
|
| 309 |
+
z-index: 1;
|
| 310 |
+
text-align: center;
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
.header-title {
|
| 314 |
+
font-size: 2.75rem;
|
| 315 |
+
font-weight: 800;
|
| 316 |
+
color: #fff;
|
| 317 |
+
margin: 0 0 8px 0;
|
| 318 |
+
letter-spacing: -0.02em;
|
| 319 |
+
display: flex;
|
| 320 |
+
align-items: center;
|
| 321 |
+
justify-content: center;
|
| 322 |
+
gap: 12px;
|
| 323 |
+
}
|
| 324 |
+
|
| 325 |
+
.header-title .star-icon {
|
| 326 |
+
font-size: 2.2rem;
|
| 327 |
+
}
|
| 328 |
+
|
| 329 |
+
.header-subtitle {
|
| 330 |
+
font-size: 1.1rem;
|
| 331 |
+
color: rgba(255, 255, 255, 0.7);
|
| 332 |
+
margin: 0;
|
| 333 |
+
font-weight: 400;
|
| 334 |
+
}
|
| 335 |
+
|
| 336 |
+
.header-badges {
|
| 337 |
+
display: flex;
|
| 338 |
+
justify-content: center;
|
| 339 |
+
gap: 10px;
|
| 340 |
+
margin-top: 20px;
|
| 341 |
+
flex-wrap: wrap;
|
| 342 |
+
}
|
| 343 |
+
|
| 344 |
+
.header-badge {
|
| 345 |
+
padding: 6px 14px;
|
| 346 |
+
background: rgba(255, 255, 255, 0.1);
|
| 347 |
+
border: 1px solid rgba(255, 255, 255, 0.15);
|
| 348 |
+
border-radius: 20px;
|
| 349 |
+
font-size: 0.8rem;
|
| 350 |
+
font-weight: 500;
|
| 351 |
+
color: rgba(255, 255, 255, 0.9);
|
| 352 |
+
}
|
| 353 |
+
|
| 354 |
+
/* ===== CARDS & GROUPS ===== */
|
| 355 |
+
.dark-card {
|
| 356 |
+
background: var(--bg-secondary) !important;
|
| 357 |
+
border: 1px solid var(--border-color) !important;
|
| 358 |
+
border-radius: 12px !important;
|
| 359 |
+
padding: 20px !important;
|
| 360 |
+
margin-bottom: 16px !important;
|
| 361 |
+
}
|
| 362 |
+
|
| 363 |
+
/* Group styling */
|
| 364 |
+
.gr-group {
|
| 365 |
+
background: var(--bg-secondary) !important;
|
| 366 |
+
border: 1px solid var(--border-color) !important;
|
| 367 |
+
border-radius: 12px !important;
|
| 368 |
+
padding: 20px !important;
|
| 369 |
+
}
|
| 370 |
+
|
| 371 |
+
/* ===== SECTION HEADERS ===== */
|
| 372 |
+
.section-header {
|
| 373 |
+
display: flex;
|
| 374 |
+
align-items: center;
|
| 375 |
+
gap: 10px;
|
| 376 |
+
margin-bottom: 16px;
|
| 377 |
+
padding-bottom: 12px;
|
| 378 |
+
border-bottom: 1px solid var(--border-color);
|
| 379 |
+
}
|
| 380 |
+
|
| 381 |
+
.section-icon {
|
| 382 |
+
width: 32px;
|
| 383 |
+
height: 32px;
|
| 384 |
+
display: flex;
|
| 385 |
+
align-items: center;
|
| 386 |
+
justify-content: center;
|
| 387 |
+
background: linear-gradient(135deg, var(--accent-secondary), var(--accent-primary));
|
| 388 |
+
border-radius: 8px;
|
| 389 |
+
font-size: 1rem;
|
| 390 |
+
}
|
| 391 |
+
|
| 392 |
+
.section-title {
|
| 393 |
+
font-size: 1.1rem;
|
| 394 |
+
font-weight: 600;
|
| 395 |
+
color: var(--text-primary);
|
| 396 |
+
margin: 0;
|
| 397 |
+
}
|
| 398 |
+
|
| 399 |
+
/* ===== ACCORDIONS ===== */
|
| 400 |
+
.gr-accordion {
|
| 401 |
+
border: 1px solid var(--border-color) !important;
|
| 402 |
+
border-radius: 10px !important;
|
| 403 |
+
overflow: hidden !important;
|
| 404 |
+
margin-bottom: 12px !important;
|
| 405 |
+
background: var(--bg-secondary) !important;
|
| 406 |
+
}
|
| 407 |
+
|
| 408 |
+
.gr-accordion > .label-wrap {
|
| 409 |
+
background: var(--bg-tertiary) !important;
|
| 410 |
+
padding: 12px 16px !important;
|
| 411 |
+
cursor: pointer !important;
|
| 412 |
+
border: none !important;
|
| 413 |
+
}
|
| 414 |
+
|
| 415 |
+
.gr-accordion > .label-wrap:hover {
|
| 416 |
+
background: #323238 !important;
|
| 417 |
+
}
|
| 418 |
+
|
| 419 |
+
.gr-accordion > .label-wrap span {
|
| 420 |
+
font-weight: 600 !important;
|
| 421 |
+
font-size: 0.95rem !important;
|
| 422 |
+
color: var(--text-primary) !important;
|
| 423 |
+
}
|
| 424 |
+
|
| 425 |
+
.gr-accordion > div:last-child {
|
| 426 |
+
padding: 16px !important;
|
| 427 |
+
background: var(--bg-secondary) !important;
|
| 428 |
+
}
|
| 429 |
+
|
| 430 |
+
/* ===== BUTTONS ===== */
|
| 431 |
+
button.primary, .gr-button-primary {
|
| 432 |
+
background: linear-gradient(135deg, var(--accent-secondary), var(--accent-primary)) !important;
|
| 433 |
+
border: none !important;
|
| 434 |
+
border-radius: 8px !important;
|
| 435 |
+
padding: 10px 20px !important;
|
| 436 |
+
font-weight: 600 !important;
|
| 437 |
+
font-size: 0.9rem !important;
|
| 438 |
+
color: white !important;
|
| 439 |
+
cursor: pointer !important;
|
| 440 |
+
transition: all 0.2s ease !important;
|
| 441 |
+
}
|
| 442 |
+
|
| 443 |
+
button.primary:hover, .gr-button-primary:hover {
|
| 444 |
+
opacity: 0.9 !important;
|
| 445 |
+
transform: translateY(-1px) !important;
|
| 446 |
+
}
|
| 447 |
+
|
| 448 |
+
button.secondary, .gr-button-secondary {
|
| 449 |
+
background: transparent !important;
|
| 450 |
+
border: 1px solid var(--accent-primary) !important;
|
| 451 |
+
border-radius: 8px !important;
|
| 452 |
+
color: var(--accent-primary) !important;
|
| 453 |
+
font-weight: 500 !important;
|
| 454 |
+
padding: 10px 20px !important;
|
| 455 |
+
transition: all 0.2s ease !important;
|
| 456 |
+
}
|
| 457 |
+
|
| 458 |
+
button.secondary:hover, .gr-button-secondary:hover {
|
| 459 |
+
background: rgba(139, 92, 246, 0.1) !important;
|
| 460 |
+
}
|
| 461 |
+
|
| 462 |
+
/* Refresh button */
|
| 463 |
+
.refresh-btn {
|
| 464 |
+
min-width: 40px !important;
|
| 465 |
+
width: 40px !important;
|
| 466 |
+
height: 40px !important;
|
| 467 |
+
padding: 0 !important;
|
| 468 |
+
display: flex !important;
|
| 469 |
+
align-items: center !important;
|
| 470 |
+
justify-content: center !important;
|
| 471 |
+
border-radius: 8px !important;
|
| 472 |
+
background: var(--bg-tertiary) !important;
|
| 473 |
+
border: 1px solid var(--border-color) !important;
|
| 474 |
+
font-size: 1rem !important;
|
| 475 |
+
color: var(--text-secondary) !important;
|
| 476 |
+
transition: all 0.2s ease !important;
|
| 477 |
+
}
|
| 478 |
+
|
| 479 |
+
.refresh-btn:hover {
|
| 480 |
+
background: var(--accent-primary) !important;
|
| 481 |
+
border-color: var(--accent-primary) !important;
|
| 482 |
+
color: white !important;
|
| 483 |
+
}
|
| 484 |
+
|
| 485 |
+
/* ===== INPUTS ===== */
|
| 486 |
+
input, textarea, select, .gr-input, .gr-text-input {
|
| 487 |
+
background: var(--bg-tertiary) !important;
|
| 488 |
+
border: 1px solid var(--border-color) !important;
|
| 489 |
+
border-radius: 8px !important;
|
| 490 |
+
color: var(--text-primary) !important;
|
| 491 |
+
padding: 10px 14px !important;
|
| 492 |
+
font-size: 0.9rem !important;
|
| 493 |
+
transition: border-color 0.2s ease !important;
|
| 494 |
+
}
|
| 495 |
+
|
| 496 |
+
input:focus, textarea:focus, select:focus {
|
| 497 |
+
border-color: var(--accent-primary) !important;
|
| 498 |
+
outline: none !important;
|
| 499 |
+
}
|
| 500 |
+
|
| 501 |
+
input::placeholder, textarea::placeholder {
|
| 502 |
+
color: var(--text-muted) !important;
|
| 503 |
+
}
|
| 504 |
+
|
| 505 |
+
/* Dropdown */
|
| 506 |
+
.gr-dropdown {
|
| 507 |
+
background: var(--bg-tertiary) !important;
|
| 508 |
+
}
|
| 509 |
+
|
| 510 |
+
/* ===== TABS ===== */
|
| 511 |
+
.gr-tabs {
|
| 512 |
+
background: transparent !important;
|
| 513 |
+
}
|
| 514 |
+
|
| 515 |
+
.gr-tab-nav {
|
| 516 |
+
background: var(--bg-secondary) !important;
|
| 517 |
+
border-radius: 10px !important;
|
| 518 |
+
padding: 4px !important;
|
| 519 |
+
margin-bottom: 16px !important;
|
| 520 |
+
border: 1px solid var(--border-color) !important;
|
| 521 |
+
gap: 4px !important;
|
| 522 |
+
display: flex !important;
|
| 523 |
+
overflow-x: auto !important;
|
| 524 |
+
}
|
| 525 |
+
|
| 526 |
+
.gr-tab-nav button {
|
| 527 |
+
border-radius: 8px !important;
|
| 528 |
+
padding: 10px 16px !important;
|
| 529 |
+
font-weight: 500 !important;
|
| 530 |
+
font-size: 0.85rem !important;
|
| 531 |
+
background: transparent !important;
|
| 532 |
+
border: none !important;
|
| 533 |
+
color: var(--text-secondary) !important;
|
| 534 |
+
white-space: nowrap !important;
|
| 535 |
+
transition: all 0.2s ease !important;
|
| 536 |
+
}
|
| 537 |
+
|
| 538 |
+
.gr-tab-nav button:hover {
|
| 539 |
+
background: var(--bg-tertiary) !important;
|
| 540 |
+
color: var(--text-primary) !important;
|
| 541 |
+
}
|
| 542 |
+
|
| 543 |
+
.gr-tab-nav button.selected {
|
| 544 |
+
background: var(--accent-primary) !important;
|
| 545 |
+
color: white !important;
|
| 546 |
+
}
|
| 547 |
+
|
| 548 |
+
/* ===== CODE OUTPUT ===== */
|
| 549 |
+
.code-wrap, .gr-code {
|
| 550 |
+
border-radius: 10px !important;
|
| 551 |
+
overflow: hidden !important;
|
| 552 |
+
border: 1px solid var(--border-color) !important;
|
| 553 |
+
}
|
| 554 |
+
|
| 555 |
+
.code-wrap pre, .gr-code pre {
|
| 556 |
+
background: #0d0d12 !important;
|
| 557 |
+
padding: 16px !important;
|
| 558 |
+
margin: 0 !important;
|
| 559 |
+
font-family: 'JetBrains Mono', monospace !important;
|
| 560 |
+
font-size: 0.85rem !important;
|
| 561 |
+
line-height: 1.5 !important;
|
| 562 |
+
max-height: 400px !important;
|
| 563 |
+
overflow: auto !important;
|
| 564 |
+
}
|
| 565 |
+
|
| 566 |
+
/* ===== FILE UPLOAD ===== */
|
| 567 |
+
.file-upload, .gr-file {
|
| 568 |
+
border: 2px dashed var(--border-color) !important;
|
| 569 |
+
border-radius: 10px !important;
|
| 570 |
+
background: var(--bg-tertiary) !important;
|
| 571 |
+
padding: 24px !important;
|
| 572 |
+
transition: all 0.2s ease !important;
|
| 573 |
+
}
|
| 574 |
+
|
| 575 |
+
.file-upload:hover, .gr-file:hover {
|
| 576 |
+
border-color: var(--accent-primary) !important;
|
| 577 |
+
}
|
| 578 |
+
|
| 579 |
+
/* ===== STATUS DISPLAYS ===== */
|
| 580 |
+
.status-box textarea {
|
| 581 |
+
font-weight: 600 !important;
|
| 582 |
+
color: var(--accent-primary) !important;
|
| 583 |
+
background: rgba(139, 92, 246, 0.1) !important;
|
| 584 |
+
border: 1px solid rgba(139, 92, 246, 0.3) !important;
|
| 585 |
+
border-radius: 8px !important;
|
| 586 |
+
}
|
| 587 |
+
|
| 588 |
+
.step-box textarea {
|
| 589 |
+
font-family: 'JetBrains Mono', monospace !important;
|
| 590 |
+
font-size: 0.85rem !important;
|
| 591 |
+
color: var(--text-secondary) !important;
|
| 592 |
+
background: var(--bg-tertiary) !important;
|
| 593 |
+
border-radius: 8px !important;
|
| 594 |
+
}
|
| 595 |
+
|
| 596 |
+
/* ===== EXAMPLES - Redesigned as chips ===== */
|
| 597 |
+
.gr-examples {
|
| 598 |
+
margin-top: 16px !important;
|
| 599 |
+
padding-top: 16px !important;
|
| 600 |
+
border-top: 1px solid var(--border-color) !important;
|
| 601 |
+
}
|
| 602 |
+
|
| 603 |
+
.gr-examples .label {
|
| 604 |
+
font-size: 0.85rem !important;
|
| 605 |
+
font-weight: 600 !important;
|
| 606 |
+
color: var(--text-secondary) !important;
|
| 607 |
+
margin-bottom: 12px !important;
|
| 608 |
+
}
|
| 609 |
+
|
| 610 |
+
.gr-examples-table {
|
| 611 |
+
display: flex !important;
|
| 612 |
+
flex-wrap: wrap !important;
|
| 613 |
+
gap: 8px !important;
|
| 614 |
+
}
|
| 615 |
+
|
| 616 |
+
.gr-examples-table tbody {
|
| 617 |
+
display: flex !important;
|
| 618 |
+
flex-wrap: wrap !important;
|
| 619 |
+
gap: 8px !important;
|
| 620 |
+
}
|
| 621 |
+
|
| 622 |
+
.gr-examples-table tr {
|
| 623 |
+
display: contents !important;
|
| 624 |
+
}
|
| 625 |
+
|
| 626 |
+
.gr-examples-table td {
|
| 627 |
+
display: block !important;
|
| 628 |
+
padding: 0 !important;
|
| 629 |
+
}
|
| 630 |
+
|
| 631 |
+
.gr-examples-table button, .gr-samples-table button {
|
| 632 |
+
background: var(--bg-tertiary) !important;
|
| 633 |
+
border: 1px solid var(--border-color) !important;
|
| 634 |
+
border-radius: 20px !important;
|
| 635 |
+
padding: 8px 16px !important;
|
| 636 |
+
font-size: 0.8rem !important;
|
| 637 |
+
color: var(--text-secondary) !important;
|
| 638 |
+
cursor: pointer !important;
|
| 639 |
+
transition: all 0.2s ease !important;
|
| 640 |
+
white-space: nowrap !important;
|
| 641 |
+
max-width: none !important;
|
| 642 |
+
}
|
| 643 |
+
|
| 644 |
+
.gr-examples-table button:hover, .gr-samples-table button:hover {
|
| 645 |
+
background: var(--accent-primary) !important;
|
| 646 |
+
border-color: var(--accent-primary) !important;
|
| 647 |
+
color: white !important;
|
| 648 |
+
}
|
| 649 |
+
|
| 650 |
+
/* ===== FILE LIST ===== */
|
| 651 |
+
.file-list {
|
| 652 |
+
background: var(--bg-tertiary) !important;
|
| 653 |
+
border-radius: 8px !important;
|
| 654 |
+
padding: 12px !important;
|
| 655 |
+
font-size: 0.85rem !important;
|
| 656 |
+
color: var(--text-secondary) !important;
|
| 657 |
+
max-height: 120px !important;
|
| 658 |
+
overflow-y: auto !important;
|
| 659 |
+
}
|
| 660 |
+
|
| 661 |
+
/* ===== WORKFLOW STEPS ===== */
|
| 662 |
+
.workflow-container {
|
| 663 |
+
display: grid;
|
| 664 |
+
grid-template-columns: repeat(2, 1fr);
|
| 665 |
+
gap: 12px;
|
| 666 |
+
padding: 16px;
|
| 667 |
+
}
|
| 668 |
+
|
| 669 |
+
.workflow-step {
|
| 670 |
+
display: flex;
|
| 671 |
+
align-items: center;
|
| 672 |
+
gap: 12px;
|
| 673 |
+
padding: 12px 14px;
|
| 674 |
+
background: var(--bg-tertiary);
|
| 675 |
+
border: 1px solid var(--border-color);
|
| 676 |
+
border-radius: 10px;
|
| 677 |
+
transition: all 0.2s ease;
|
| 678 |
+
}
|
| 679 |
+
|
| 680 |
+
.workflow-step:hover {
|
| 681 |
+
border-color: var(--accent-primary);
|
| 682 |
+
}
|
| 683 |
+
|
| 684 |
+
.step-number {
|
| 685 |
+
width: 28px;
|
| 686 |
+
height: 28px;
|
| 687 |
+
display: flex;
|
| 688 |
+
align-items: center;
|
| 689 |
+
justify-content: center;
|
| 690 |
+
background: linear-gradient(135deg, var(--accent-secondary), var(--accent-primary));
|
| 691 |
+
border-radius: 6px;
|
| 692 |
+
color: white;
|
| 693 |
+
font-weight: 700;
|
| 694 |
+
font-size: 0.8rem;
|
| 695 |
+
flex-shrink: 0;
|
| 696 |
+
}
|
| 697 |
+
|
| 698 |
+
.step-content {
|
| 699 |
+
flex: 1;
|
| 700 |
+
min-width: 0;
|
| 701 |
+
}
|
| 702 |
+
|
| 703 |
+
.step-title {
|
| 704 |
+
font-weight: 600;
|
| 705 |
+
color: var(--text-primary);
|
| 706 |
+
font-size: 0.85rem;
|
| 707 |
+
}
|
| 708 |
+
|
| 709 |
+
.step-desc {
|
| 710 |
+
font-size: 0.75rem;
|
| 711 |
+
color: var(--text-muted);
|
| 712 |
+
margin-top: 2px;
|
| 713 |
+
white-space: nowrap;
|
| 714 |
+
overflow: hidden;
|
| 715 |
+
text-overflow: ellipsis;
|
| 716 |
+
}
|
| 717 |
+
|
| 718 |
+
/* ===== SCROLLBAR ===== */
|
| 719 |
+
::-webkit-scrollbar {
|
| 720 |
+
width: 6px;
|
| 721 |
+
height: 6px;
|
| 722 |
+
}
|
| 723 |
+
|
| 724 |
+
::-webkit-scrollbar-track {
|
| 725 |
+
background: var(--bg-tertiary);
|
| 726 |
+
border-radius: 3px;
|
| 727 |
+
}
|
| 728 |
+
|
| 729 |
+
::-webkit-scrollbar-thumb {
|
| 730 |
+
background: var(--border-color);
|
| 731 |
+
border-radius: 3px;
|
| 732 |
+
}
|
| 733 |
+
|
| 734 |
+
::-webkit-scrollbar-thumb:hover {
|
| 735 |
+
background: #52525b;
|
| 736 |
+
}
|
| 737 |
+
|
| 738 |
+
/* ===== LAYOUT FIXES ===== */
|
| 739 |
+
.gr-row {
|
| 740 |
+
gap: 12px !important;
|
| 741 |
+
}
|
| 742 |
+
|
| 743 |
+
.gr-column {
|
| 744 |
+
gap: 12px !important;
|
| 745 |
+
}
|
| 746 |
+
|
| 747 |
+
/* Remove excess padding/margins */
|
| 748 |
+
.gr-form {
|
| 749 |
+
gap: 12px !important;
|
| 750 |
+
}
|
| 751 |
+
|
| 752 |
+
.gr-block {
|
| 753 |
+
padding: 0 !important;
|
| 754 |
+
}
|
| 755 |
+
|
| 756 |
+
/* Label styling */
|
| 757 |
+
label, .gr-input-label {
|
| 758 |
+
font-size: 0.85rem !important;
|
| 759 |
+
font-weight: 500 !important;
|
| 760 |
+
color: var(--text-secondary) !important;
|
| 761 |
+
margin-bottom: 6px !important;
|
| 762 |
+
}
|
| 763 |
+
|
| 764 |
+
/* Info text */
|
| 765 |
+
.gr-info {
|
| 766 |
+
font-size: 0.75rem !important;
|
| 767 |
+
color: var(--text-muted) !important;
|
| 768 |
+
}
|
| 769 |
+
|
| 770 |
+
/* Fix button alignment in rows */
|
| 771 |
+
.gr-button {
|
| 772 |
+
height: 40px !important;
|
| 773 |
+
}
|
| 774 |
+
|
| 775 |
+
/* Slider styling */
|
| 776 |
+
input[type="range"] {
|
| 777 |
+
accent-color: var(--accent-primary) !important;
|
| 778 |
+
}
|
| 779 |
+
|
| 780 |
+
.gr-slider input {
|
| 781 |
+
background: var(--bg-tertiary) !important;
|
| 782 |
+
}
|
| 783 |
+
|
| 784 |
+
/* ===== RESPONSIVE ===== */
|
| 785 |
+
@media (max-width: 768px) {
|
| 786 |
+
.header-title {
|
| 787 |
+
font-size: 1.75rem;
|
| 788 |
+
}
|
| 789 |
+
|
| 790 |
+
.gradio-container {
|
| 791 |
+
padding: 16px !important;
|
| 792 |
+
}
|
| 793 |
+
|
| 794 |
+
.workflow-container {
|
| 795 |
+
grid-template-columns: 1fr;
|
| 796 |
+
}
|
| 797 |
+
}
|
| 798 |
+
"""
|
| 799 |
+
|
| 800 |
+
|
| 801 |
+
# ==================== HELPER FUNCTIONS ====================
|
| 802 |
+
|
| 803 |
+
|
| 804 |
+
def validate_api_key(
|
| 805 |
+
provider: str, api_key: str, base_url: str = ""
|
| 806 |
+
) -> tuple[bool, str]:
|
| 807 |
+
"""Validate that the API key is provided for the selected provider."""
|
| 808 |
+
if provider == "custom":
|
| 809 |
+
if not api_key or api_key.strip() == "":
|
| 810 |
+
return False, "❌ Please provide an API key for custom provider"
|
| 811 |
+
if not base_url or base_url.strip() == "":
|
| 812 |
+
return False, "❌ Please provide a Base URL for custom provider"
|
| 813 |
+
return True, "✅ Custom provider configured"
|
| 814 |
+
|
| 815 |
+
if not api_key or api_key.strip() == "":
|
| 816 |
+
env_var = {
|
| 817 |
+
"google": "GOOGLE_API_KEY",
|
| 818 |
+
"openai": "OPENAI_API_KEY",
|
| 819 |
+
"anthropic": "ANTHROPIC_API_KEY",
|
| 820 |
+
}.get(provider, "")
|
| 821 |
+
|
| 822 |
+
# Check environment variable
|
| 823 |
+
if os.getenv(env_var):
|
| 824 |
+
return True, f"✅ Using API key from environment variable ({env_var})"
|
| 825 |
+
return (
|
| 826 |
+
False,
|
| 827 |
+
f"❌ Please provide an API key or set the {env_var} environment variable",
|
| 828 |
+
)
|
| 829 |
+
|
| 830 |
+
return True, "✅ API key provided"
|
| 831 |
+
|
| 832 |
+
|
| 833 |
+
def get_model_choices(
|
| 834 |
+
provider: str, api_key: str | None = None, base_url: str | None = None
|
| 835 |
+
) -> list[str]:
|
| 836 |
+
"""Get available models for each provider (fallback list)."""
|
| 837 |
+
fallback_models = {
|
| 838 |
+
"google": [
|
| 839 |
+
"gemini-2.0-flash",
|
| 840 |
+
"gemini-1.5-pro",
|
| 841 |
+
"gemini-1.5-flash",
|
| 842 |
+
],
|
| 843 |
+
"openai": [
|
| 844 |
+
"gpt-4o",
|
| 845 |
+
"gpt-4o-mini",
|
| 846 |
+
"gpt-4-turbo",
|
| 847 |
+
"gpt-4",
|
| 848 |
+
"gpt-3.5-turbo",
|
| 849 |
+
],
|
| 850 |
+
"anthropic": [
|
| 851 |
+
"claude-sonnet-4-20250514",
|
| 852 |
+
"claude-3-5-sonnet-20241022",
|
| 853 |
+
"claude-3-5-haiku-20241022",
|
| 854 |
+
"claude-3-opus-20240229",
|
| 855 |
+
],
|
| 856 |
+
"custom": [],
|
| 857 |
+
}
|
| 858 |
+
return fallback_models.get(provider, [])
|
| 859 |
+
|
| 860 |
+
|
| 861 |
+
def update_model_dropdown(provider: str, api_key: str = "", base_url: str = ""):
|
| 862 |
+
"""Update model dropdown when provider changes."""
|
| 863 |
+
# Fetch models with status
|
| 864 |
+
models, status = fetch_models_for_provider(
|
| 865 |
+
provider,
|
| 866 |
+
api_key.strip() if api_key and api_key.strip() else None,
|
| 867 |
+
base_url.strip() if base_url and base_url.strip() else None,
|
| 868 |
+
)
|
| 869 |
+
|
| 870 |
+
if not models:
|
| 871 |
+
models = get_model_choices(provider)
|
| 872 |
+
|
| 873 |
+
return gr.update(choices=models, value=models[0] if models else None)
|
| 874 |
+
|
| 875 |
+
|
| 876 |
+
def update_base_url_visibility(provider: str):
|
| 877 |
+
"""Show/hide base URL field based on provider."""
|
| 878 |
+
return gr.update(visible=(provider == "custom"))
|
| 879 |
+
|
| 880 |
+
|
| 881 |
+
def refresh_models(provider: str, api_key: str, base_url: str):
|
| 882 |
+
"""Refresh the model list from the API."""
|
| 883 |
+
models, status = fetch_models_for_provider(
|
| 884 |
+
provider,
|
| 885 |
+
api_key.strip() if api_key and api_key.strip() else None,
|
| 886 |
+
base_url.strip() if base_url and base_url.strip() else None,
|
| 887 |
+
)
|
| 888 |
+
|
| 889 |
+
if models:
|
| 890 |
+
return gr.update(choices=models, value=models[0]), status
|
| 891 |
+
|
| 892 |
+
# Use fallback if no models returned
|
| 893 |
+
fallback = get_model_choices(provider)
|
| 894 |
+
if fallback:
|
| 895 |
+
return gr.update(
|
| 896 |
+
choices=fallback, value=fallback[0]
|
| 897 |
+
), status or "ℹ️ Using default models"
|
| 898 |
+
|
| 899 |
+
return gr.update(), status or "❌ No models available"
|
| 900 |
+
|
| 901 |
+
|
| 902 |
+
def copy_uploaded_files(files: list) -> str:
|
| 903 |
+
"""Copy uploaded files to the data directory."""
|
| 904 |
+
data_dir = os.path.join(os.path.dirname(__file__), "data")
|
| 905 |
+
|
| 906 |
+
# Clear existing files in data directory (except .gitkeep)
|
| 907 |
+
if os.path.exists(data_dir):
|
| 908 |
+
for f in os.listdir(data_dir):
|
| 909 |
+
if f != ".gitkeep":
|
| 910 |
+
file_path = os.path.join(data_dir, f)
|
| 911 |
+
if os.path.isfile(file_path):
|
| 912 |
+
os.remove(file_path)
|
| 913 |
+
else:
|
| 914 |
+
os.makedirs(data_dir)
|
| 915 |
+
|
| 916 |
+
# Copy new files
|
| 917 |
+
copied_files = []
|
| 918 |
+
if files:
|
| 919 |
+
for file_path in files:
|
| 920 |
+
if file_path:
|
| 921 |
+
filename = os.path.basename(file_path)
|
| 922 |
+
dest_path = os.path.join(data_dir, filename)
|
| 923 |
+
shutil.copy2(file_path, dest_path)
|
| 924 |
+
copied_files.append(filename)
|
| 925 |
+
|
| 926 |
+
if copied_files:
|
| 927 |
+
return f"✅ Uploaded {len(copied_files)} file(s): {', '.join(copied_files)}"
|
| 928 |
+
return "ℹ️ No files uploaded. Using existing files in data/ directory."
|
| 929 |
+
|
| 930 |
+
|
| 931 |
+
def list_data_files() -> str:
|
| 932 |
+
"""List files currently in the data directory."""
|
| 933 |
+
data_dir = os.path.join(os.path.dirname(__file__), "data")
|
| 934 |
+
if not os.path.exists(data_dir):
|
| 935 |
+
return "No data directory found."
|
| 936 |
+
|
| 937 |
+
files = [
|
| 938 |
+
f
|
| 939 |
+
for f in os.listdir(data_dir)
|
| 940 |
+
if f != ".gitkeep" and os.path.isfile(os.path.join(data_dir, f))
|
| 941 |
+
]
|
| 942 |
+
if files:
|
| 943 |
+
file_list = "\n".join([f" 📄 {f}" for f in files])
|
| 944 |
+
return f"**Files in data/ directory:**\n{file_list}"
|
| 945 |
+
return "No data files found. Please upload some files."
|
| 946 |
+
|
| 947 |
+
|
| 948 |
+
# ==================== MAIN WORKFLOW ====================
|
| 949 |
+
|
| 950 |
+
|
| 951 |
+
def run_ds_star_workflow(
|
| 952 |
+
query: str,
|
| 953 |
+
provider: str,
|
| 954 |
+
model: str,
|
| 955 |
+
api_key: str,
|
| 956 |
+
base_url: str,
|
| 957 |
+
max_iterations: int,
|
| 958 |
+
temperature: float,
|
| 959 |
+
progress=gr.Progress(),
|
| 960 |
+
) -> Generator[tuple[str, str, str, str], None, None]:
|
| 961 |
+
"""
|
| 962 |
+
Run the DS-STAR workflow with streaming updates.
|
| 963 |
+
|
| 964 |
+
Yields: (status, current_step, code_output, execution_result)
|
| 965 |
+
"""
|
| 966 |
+
# Validate inputs
|
| 967 |
+
if not query or query.strip() == "":
|
| 968 |
+
yield "❌ Error", "Please enter a query", "", ""
|
| 969 |
+
return
|
| 970 |
+
|
| 971 |
+
is_valid, message = validate_api_key(provider, api_key, base_url)
|
| 972 |
+
if not is_valid:
|
| 973 |
+
yield "❌ Configuration Error", message, "", ""
|
| 974 |
+
return
|
| 975 |
+
|
| 976 |
+
# Initialize LLM
|
| 977 |
+
yield "🔄 Initializing...", "Setting up LLM connection", "", ""
|
| 978 |
+
|
| 979 |
+
# For custom provider, use openai with custom base_url
|
| 980 |
+
actual_provider = "openai" if provider == "custom" else provider
|
| 981 |
+
|
| 982 |
+
try:
|
| 983 |
+
llm = get_llm(
|
| 984 |
+
provider=actual_provider,
|
| 985 |
+
model=model,
|
| 986 |
+
api_key=api_key if api_key.strip() else None,
|
| 987 |
+
temperature=temperature,
|
| 988 |
+
base_url=base_url if provider == "custom" and base_url.strip() else None,
|
| 989 |
+
)
|
| 990 |
+
except Exception as e:
|
| 991 |
+
yield "❌ LLM Error", f"Failed to initialize LLM: {str(e)}", "", ""
|
| 992 |
+
return
|
| 993 |
+
|
| 994 |
+
# Build graph
|
| 995 |
+
yield "🔄 Building Graph...", "Constructing multi-agent workflow", "", ""
|
| 996 |
+
|
| 997 |
+
try:
|
| 998 |
+
app = build_ds_star_graph(llm, max_iterations)
|
| 999 |
+
except Exception as e:
|
| 1000 |
+
yield "❌ Graph Error", f"Failed to build graph: {str(e)}", "", ""
|
| 1001 |
+
return
|
| 1002 |
+
|
| 1003 |
+
# Create initial state
|
| 1004 |
+
initial_state = create_initial_state(query, llm, max_iterations)
|
| 1005 |
+
config = {"configurable": {"thread_id": f"gradio-session-{os.urandom(4).hex()}"}}
|
| 1006 |
+
|
| 1007 |
+
# Run workflow with progress updates
|
| 1008 |
+
step_descriptions = {
|
| 1009 |
+
"analyzer": "📊 Analyzing data files...",
|
| 1010 |
+
"planner": "📝 Creating execution plan...",
|
| 1011 |
+
"coder": "💻 Generating code...",
|
| 1012 |
+
"verifier": "✅ Verifying solution...",
|
| 1013 |
+
"router": "🔀 Routing to next step...",
|
| 1014 |
+
"backtrack": "↩️ Backtracking...",
|
| 1015 |
+
"finalyzer": "🎯 Finalizing solution...",
|
| 1016 |
+
}
|
| 1017 |
+
|
| 1018 |
+
yield "🚀 Running DS-STAR...", "Starting multi-agent workflow", "", ""
|
| 1019 |
+
|
| 1020 |
+
try:
|
| 1021 |
+
# Stream through the workflow
|
| 1022 |
+
current_code = ""
|
| 1023 |
+
current_result = ""
|
| 1024 |
+
iteration = 0
|
| 1025 |
+
|
| 1026 |
+
for event in app.stream(initial_state, config, stream_mode="values"):
|
| 1027 |
+
# Update progress based on current state
|
| 1028 |
+
next_node = event.get("next", "")
|
| 1029 |
+
iteration = event.get("iteration", 0)
|
| 1030 |
+
|
| 1031 |
+
step_desc = step_descriptions.get(next_node, f"Processing: {next_node}")
|
| 1032 |
+
progress_msg = (
|
| 1033 |
+
f"Iteration {iteration}/{max_iterations}"
|
| 1034 |
+
if iteration > 0
|
| 1035 |
+
else "Starting..."
|
| 1036 |
+
)
|
| 1037 |
+
|
| 1038 |
+
current_code = event.get("current_code", current_code) or ""
|
| 1039 |
+
current_result = event.get("execution_result", current_result) or ""
|
| 1040 |
+
|
| 1041 |
+
yield f"🔄 {progress_msg}", step_desc, current_code, current_result
|
| 1042 |
+
|
| 1043 |
+
# Final state
|
| 1044 |
+
final_code = event.get("current_code", "") or ""
|
| 1045 |
+
final_result = event.get("execution_result", "") or ""
|
| 1046 |
+
|
| 1047 |
+
yield "✅ Complete!", "Workflow finished successfully", final_code, final_result
|
| 1048 |
+
|
| 1049 |
+
except Exception as e:
|
| 1050 |
+
import traceback
|
| 1051 |
+
|
| 1052 |
+
error_trace = traceback.format_exc()
|
| 1053 |
+
yield (
|
| 1054 |
+
"❌ Execution Error",
|
| 1055 |
+
f"Error: {str(e)}\n\n{error_trace}",
|
| 1056 |
+
current_code,
|
| 1057 |
+
current_result,
|
| 1058 |
+
)
|
| 1059 |
+
|
| 1060 |
+
|
| 1061 |
+
# ==================== GRADIO INTERFACE ====================
|
| 1062 |
+
|
| 1063 |
+
|
| 1064 |
+
def create_gradio_app():
|
| 1065 |
+
"""Create and configure the Gradio application."""
|
| 1066 |
+
|
| 1067 |
+
with gr.Blocks(title="DS-STAR | Multi-Agent Data Science") as demo:
|
| 1068 |
+
# Header Section
|
| 1069 |
+
gr.HTML("""
|
| 1070 |
+
<div class="header-section">
|
| 1071 |
+
<div class="header-content">
|
| 1072 |
+
<h1 class="header-title">
|
| 1073 |
+
<span class="star-icon">✨</span>
|
| 1074 |
+
DS-STAR
|
| 1075 |
+
</h1>
|
| 1076 |
+
<p class="header-subtitle">Multi-Agent System for Automated Data Science Tasks</p>
|
| 1077 |
+
<div class="header-badges">
|
| 1078 |
+
<span class="header-badge">🔗 LangGraph</span>
|
| 1079 |
+
<span class="header-badge">🤗 HuggingFace MCP</span>
|
| 1080 |
+
<span class="header-badge">🤖 Multi-Agent</span>
|
| 1081 |
+
</div>
|
| 1082 |
+
</div>
|
| 1083 |
+
</div>
|
| 1084 |
+
""")
|
| 1085 |
+
|
| 1086 |
+
with gr.Row():
|
| 1087 |
+
# Left Column - Configuration (narrower)
|
| 1088 |
+
with gr.Column(scale=1, min_width=300):
|
| 1089 |
+
# LLM Configuration - Accordion
|
| 1090 |
+
with gr.Accordion("🔑 LLM Configuration", open=True):
|
| 1091 |
+
provider = gr.Dropdown(
|
| 1092 |
+
choices=["google", "openai", "anthropic", "custom"],
|
| 1093 |
+
value="google",
|
| 1094 |
+
label="Provider",
|
| 1095 |
+
info="Select your LLM provider",
|
| 1096 |
+
)
|
| 1097 |
+
|
| 1098 |
+
base_url = gr.Textbox(
|
| 1099 |
+
label="Base URL",
|
| 1100 |
+
placeholder="https://api.together.xyz/v1",
|
| 1101 |
+
info="OpenAI-compatible API endpoint",
|
| 1102 |
+
visible=False,
|
| 1103 |
+
)
|
| 1104 |
+
|
| 1105 |
+
with gr.Row():
|
| 1106 |
+
model = gr.Dropdown(
|
| 1107 |
+
choices=get_model_choices("google"),
|
| 1108 |
+
value="gemini-2.0-flash",
|
| 1109 |
+
label="Model",
|
| 1110 |
+
scale=5,
|
| 1111 |
+
)
|
| 1112 |
+
refresh_models_btn = gr.Button(
|
| 1113 |
+
"🔄",
|
| 1114 |
+
variant="secondary",
|
| 1115 |
+
size="sm",
|
| 1116 |
+
scale=1,
|
| 1117 |
+
min_width=40,
|
| 1118 |
+
elem_classes="refresh-btn",
|
| 1119 |
+
)
|
| 1120 |
+
|
| 1121 |
+
api_key = gr.Textbox(
|
| 1122 |
+
label="API Key",
|
| 1123 |
+
type="password",
|
| 1124 |
+
placeholder="Enter API key or use env variable",
|
| 1125 |
+
)
|
| 1126 |
+
|
| 1127 |
+
api_status = gr.Markdown(
|
| 1128 |
+
"💡 *Enter API key or set environment variable*"
|
| 1129 |
+
)
|
| 1130 |
+
|
| 1131 |
+
# Advanced Settings - Accordion (closed by default)
|
| 1132 |
+
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
| 1133 |
+
max_iterations = gr.Slider(
|
| 1134 |
+
minimum=1,
|
| 1135 |
+
maximum=50,
|
| 1136 |
+
value=20,
|
| 1137 |
+
step=1,
|
| 1138 |
+
label="Max Iterations",
|
| 1139 |
+
info="Maximum refinement cycles",
|
| 1140 |
+
)
|
| 1141 |
+
|
| 1142 |
+
temperature = gr.Slider(
|
| 1143 |
+
minimum=0.0,
|
| 1144 |
+
maximum=1.0,
|
| 1145 |
+
value=0.0,
|
| 1146 |
+
step=0.1,
|
| 1147 |
+
label="Temperature",
|
| 1148 |
+
info="Controls response creativity (0 = deterministic)",
|
| 1149 |
+
)
|
| 1150 |
+
|
| 1151 |
+
# Data Files - Accordion
|
| 1152 |
+
with gr.Accordion("📁 Data Files", open=True):
|
| 1153 |
+
file_upload = gr.File(
|
| 1154 |
+
label="Upload Files",
|
| 1155 |
+
file_count="multiple",
|
| 1156 |
+
file_types=[".csv", ".json", ".xlsx", ".parquet", ".txt"],
|
| 1157 |
+
type="filepath",
|
| 1158 |
+
)
|
| 1159 |
+
|
| 1160 |
+
upload_status = gr.Markdown(
|
| 1161 |
+
list_data_files(), elem_classes="file-list"
|
| 1162 |
+
)
|
| 1163 |
+
|
| 1164 |
+
refresh_btn = gr.Button(
|
| 1165 |
+
"🔄 Refresh Files", variant="secondary", size="sm"
|
| 1166 |
+
)
|
| 1167 |
+
|
| 1168 |
+
# Right Column - Main Interface (wider)
|
| 1169 |
+
with gr.Column(scale=2, min_width=500):
|
| 1170 |
+
# Query Input Section
|
| 1171 |
+
gr.HTML("""
|
| 1172 |
+
<div class="section-header">
|
| 1173 |
+
<div class="section-icon">💬</div>
|
| 1174 |
+
<h3 class="section-title">Ask Your Question</h3>
|
| 1175 |
+
</div>
|
| 1176 |
+
""")
|
| 1177 |
+
|
| 1178 |
+
query_input = gr.Textbox(
|
| 1179 |
+
label="",
|
| 1180 |
+
placeholder="e.g., What percentage of transactions use credit cards? Show the distribution by category.",
|
| 1181 |
+
lines=2,
|
| 1182 |
+
max_lines=4,
|
| 1183 |
+
show_label=False,
|
| 1184 |
+
)
|
| 1185 |
+
|
| 1186 |
+
# Buttons Row - properly aligned
|
| 1187 |
+
with gr.Row():
|
| 1188 |
+
run_btn = gr.Button(
|
| 1189 |
+
"🚀 Run Analysis",
|
| 1190 |
+
variant="primary",
|
| 1191 |
+
size="lg",
|
| 1192 |
+
scale=3,
|
| 1193 |
+
)
|
| 1194 |
+
clear_btn = gr.Button(
|
| 1195 |
+
"🗑️ Clear",
|
| 1196 |
+
variant="secondary",
|
| 1197 |
+
size="lg",
|
| 1198 |
+
scale=1,
|
| 1199 |
+
)
|
| 1200 |
+
|
| 1201 |
+
# Example Queries - as clickable chips
|
| 1202 |
+
gr.HTML("""
|
| 1203 |
+
<div style="margin-top: 16px; padding-top: 12px; border-top: 1px solid var(--border-color);">
|
| 1204 |
+
<span style="font-size: 0.8rem; font-weight: 600; color: var(--text-muted); margin-bottom: 8px; display: block;">💡 Quick Examples</span>
|
| 1205 |
+
</div>
|
| 1206 |
+
""")
|
| 1207 |
+
gr.Examples(
|
| 1208 |
+
examples=[
|
| 1209 |
+
["Show distribution of transaction amounts"],
|
| 1210 |
+
["Which category has highest sales?"],
|
| 1211 |
+
["Find correlations between columns"],
|
| 1212 |
+
["Create summary statistics report"],
|
| 1213 |
+
],
|
| 1214 |
+
inputs=query_input,
|
| 1215 |
+
label="",
|
| 1216 |
+
examples_per_page=4,
|
| 1217 |
+
)
|
| 1218 |
+
|
| 1219 |
+
# Status Section
|
| 1220 |
+
gr.HTML("""
|
| 1221 |
+
<div class="section-header" style="margin-top: 20px;">
|
| 1222 |
+
<div class="section-icon">📊</div>
|
| 1223 |
+
<h3 class="section-title">Status</h3>
|
| 1224 |
+
</div>
|
| 1225 |
+
""")
|
| 1226 |
+
|
| 1227 |
+
with gr.Row():
|
| 1228 |
+
status_display = gr.Textbox(
|
| 1229 |
+
label="Status",
|
| 1230 |
+
value="⏳ Ready",
|
| 1231 |
+
interactive=False,
|
| 1232 |
+
scale=1,
|
| 1233 |
+
elem_classes="status-box",
|
| 1234 |
+
lines=1,
|
| 1235 |
+
max_lines=1,
|
| 1236 |
+
)
|
| 1237 |
+
current_step = gr.Textbox(
|
| 1238 |
+
label="Current Step",
|
| 1239 |
+
value="Waiting for query...",
|
| 1240 |
+
interactive=False,
|
| 1241 |
+
scale=2,
|
| 1242 |
+
elem_classes="step-box",
|
| 1243 |
+
lines=1,
|
| 1244 |
+
max_lines=1,
|
| 1245 |
+
)
|
| 1246 |
+
|
| 1247 |
+
# Results Tabs
|
| 1248 |
+
with gr.Tabs():
|
| 1249 |
+
with gr.TabItem("💻 Code", id=0):
|
| 1250 |
+
code_output = gr.Code(
|
| 1251 |
+
label="",
|
| 1252 |
+
language="python",
|
| 1253 |
+
lines=16,
|
| 1254 |
+
interactive=False,
|
| 1255 |
+
show_label=False,
|
| 1256 |
+
)
|
| 1257 |
+
|
| 1258 |
+
with gr.TabItem("📊 Output", id=1):
|
| 1259 |
+
result_output = gr.Textbox(
|
| 1260 |
+
label="",
|
| 1261 |
+
lines=14,
|
| 1262 |
+
interactive=False,
|
| 1263 |
+
show_label=False,
|
| 1264 |
+
)
|
| 1265 |
+
|
| 1266 |
+
with gr.TabItem("🔄 Workflow", id=2):
|
| 1267 |
+
gr.HTML("""
|
| 1268 |
+
<div class="workflow-container">
|
| 1269 |
+
<div class="workflow-step">
|
| 1270 |
+
<div class="step-number">1</div>
|
| 1271 |
+
<div class="step-content">
|
| 1272 |
+
<div class="step-title">Analyzer</div>
|
| 1273 |
+
<div class="step-desc">Examines data structure</div>
|
| 1274 |
+
</div>
|
| 1275 |
+
</div>
|
| 1276 |
+
<div class="workflow-step">
|
| 1277 |
+
<div class="step-number">2</div>
|
| 1278 |
+
<div class="step-content">
|
| 1279 |
+
<div class="step-title">Planner</div>
|
| 1280 |
+
<div class="step-desc">Creates execution plan</div>
|
| 1281 |
+
</div>
|
| 1282 |
+
</div>
|
| 1283 |
+
<div class="workflow-step">
|
| 1284 |
+
<div class="step-number">3</div>
|
| 1285 |
+
<div class="step-content">
|
| 1286 |
+
<div class="step-title">Coder</div>
|
| 1287 |
+
<div class="step-desc">Generates Python code</div>
|
| 1288 |
+
</div>
|
| 1289 |
+
</div>
|
| 1290 |
+
<div class="workflow-step">
|
| 1291 |
+
<div class="step-number">4</div>
|
| 1292 |
+
<div class="step-content">
|
| 1293 |
+
<div class="step-title">Verifier</div>
|
| 1294 |
+
<div class="step-desc">Validates solution</div>
|
| 1295 |
+
</div>
|
| 1296 |
+
</div>
|
| 1297 |
+
<div class="workflow-step">
|
| 1298 |
+
<div class="step-number">5</div>
|
| 1299 |
+
<div class="step-content">
|
| 1300 |
+
<div class="step-title">Router</div>
|
| 1301 |
+
<div class="step-desc">Decides next step</div>
|
| 1302 |
+
</div>
|
| 1303 |
+
</div>
|
| 1304 |
+
<div class="workflow-step">
|
| 1305 |
+
<div class="step-number">6</div>
|
| 1306 |
+
<div class="step-content">
|
| 1307 |
+
<div class="step-title">Finalyzer</div>
|
| 1308 |
+
<div class="step-desc">Delivers final result</div>
|
| 1309 |
+
</div>
|
| 1310 |
+
</div>
|
| 1311 |
+
</div>
|
| 1312 |
+
""")
|
| 1313 |
+
|
| 1314 |
+
with gr.TabItem("ℹ️ About", id=3):
|
| 1315 |
+
gr.Markdown("""
|
| 1316 |
+
## About DS-STAR
|
| 1317 |
+
|
| 1318 |
+
**DS-STAR** (Data Science - Structured Task Analysis and Resolution) is a multi-agent system for automating data science tasks.
|
| 1319 |
+
|
| 1320 |
+
### ✨ Features
|
| 1321 |
+
|
| 1322 |
+
- 🤖 **Multi-Agent** — Specialized agents for analysis, planning, coding & verification
|
| 1323 |
+
- 🔄 **Iterative** — Automatically refines solutions
|
| 1324 |
+
- 🔙 **Backtracking** — Smart rollback when needed
|
| 1325 |
+
- 💻 **Code Gen** — Produces clean Python code
|
| 1326 |
+
|
| 1327 |
+
### 🔌 Providers
|
| 1328 |
+
|
| 1329 |
+
**Google Gemini** • **OpenAI GPT** • **Anthropic Claude** • **Custom API**
|
| 1330 |
+
|
| 1331 |
+
---
|
| 1332 |
+
|
| 1333 |
+
Built for the **HuggingFace MCP Hackathon** • [GitHub](https://github.com/Anurag-Deo/DS-STAR)
|
| 1334 |
+
""")
|
| 1335 |
+
|
| 1336 |
+
# Event Handlers
|
| 1337 |
+
provider.change(
|
| 1338 |
+
fn=update_model_dropdown,
|
| 1339 |
+
inputs=[provider, api_key, base_url],
|
| 1340 |
+
outputs=[model],
|
| 1341 |
+
)
|
| 1342 |
+
|
| 1343 |
+
provider.change(
|
| 1344 |
+
fn=update_base_url_visibility,
|
| 1345 |
+
inputs=[provider],
|
| 1346 |
+
outputs=[base_url],
|
| 1347 |
+
)
|
| 1348 |
+
|
| 1349 |
+
provider.change(
|
| 1350 |
+
fn=lambda p, k, b: validate_api_key(p, k, b)[1],
|
| 1351 |
+
inputs=[provider, api_key, base_url],
|
| 1352 |
+
outputs=[api_status],
|
| 1353 |
+
)
|
| 1354 |
+
|
| 1355 |
+
api_key.change(
|
| 1356 |
+
fn=lambda p, k, b: validate_api_key(p, k, b)[1],
|
| 1357 |
+
inputs=[provider, api_key, base_url],
|
| 1358 |
+
outputs=[api_status],
|
| 1359 |
+
)
|
| 1360 |
+
|
| 1361 |
+
base_url.change(
|
| 1362 |
+
fn=lambda p, k, b: validate_api_key(p, k, b)[1],
|
| 1363 |
+
inputs=[provider, api_key, base_url],
|
| 1364 |
+
outputs=[api_status],
|
| 1365 |
+
)
|
| 1366 |
+
|
| 1367 |
+
refresh_models_btn.click(
|
| 1368 |
+
fn=refresh_models,
|
| 1369 |
+
inputs=[provider, api_key, base_url],
|
| 1370 |
+
outputs=[model, api_status],
|
| 1371 |
+
)
|
| 1372 |
+
|
| 1373 |
+
file_upload.change(
|
| 1374 |
+
fn=copy_uploaded_files, inputs=[file_upload], outputs=[upload_status]
|
| 1375 |
+
)
|
| 1376 |
+
|
| 1377 |
+
refresh_btn.click(fn=list_data_files, outputs=[upload_status])
|
| 1378 |
+
|
| 1379 |
+
run_btn.click(
|
| 1380 |
+
fn=run_ds_star_workflow,
|
| 1381 |
+
inputs=[
|
| 1382 |
+
query_input,
|
| 1383 |
+
provider,
|
| 1384 |
+
model,
|
| 1385 |
+
api_key,
|
| 1386 |
+
base_url,
|
| 1387 |
+
max_iterations,
|
| 1388 |
+
temperature,
|
| 1389 |
+
],
|
| 1390 |
+
outputs=[status_display, current_step, code_output, result_output],
|
| 1391 |
+
)
|
| 1392 |
+
|
| 1393 |
+
clear_btn.click(
|
| 1394 |
+
fn=lambda: ("⏳ Ready", "Waiting for query...", "", ""),
|
| 1395 |
+
outputs=[status_display, current_step, code_output, result_output],
|
| 1396 |
+
)
|
| 1397 |
+
|
| 1398 |
+
return demo
|
| 1399 |
+
|
| 1400 |
+
|
| 1401 |
+
# ==================== MAIN ====================
|
| 1402 |
+
|
| 1403 |
+
if __name__ == "__main__":
|
| 1404 |
+
demo = create_gradio_app()
|
| 1405 |
+
theme = create_ds_star_theme()
|
| 1406 |
+
demo.launch(share=False, show_error=True, theme=theme, css=CUSTOM_CSS)
|
data/cards_data.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
main.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
DS-STAR: Multi-Agent System for Data Science Tasks
|
| 3 |
+
|
| 4 |
+
This is the main entry point for the refactored DS-STAR system.
|
| 5 |
+
All agents are modularized and can be tested independently.
|
| 6 |
+
|
| 7 |
+
Usage:
|
| 8 |
+
python main_new.py
|
| 9 |
+
|
| 10 |
+
Or customize:
|
| 11 |
+
from src.graph import run_ds_star
|
| 12 |
+
from src.config import get_llm
|
| 13 |
+
|
| 14 |
+
llm = get_llm(provider="google", model="gemini-1.5-flash")
|
| 15 |
+
result = run_ds_star("Your question here", llm, max_iterations=20)
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
import sys
|
| 19 |
+
|
| 20 |
+
from src.config import DEFAULT_CONFIG, get_llm
|
| 21 |
+
from src.graph import run_ds_star
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def main():
|
| 25 |
+
"""
|
| 26 |
+
Main execution function for DS-STAR.
|
| 27 |
+
"""
|
| 28 |
+
# Configuration
|
| 29 |
+
query = "What percentage of transactions use credit cards?"
|
| 30 |
+
max_iterations = DEFAULT_CONFIG["max_iterations"]
|
| 31 |
+
provider = DEFAULT_CONFIG["provider"]
|
| 32 |
+
model = DEFAULT_CONFIG["model"]
|
| 33 |
+
|
| 34 |
+
print("Initializing DS-STAR Multi-Agent System...")
|
| 35 |
+
print(f"Provider: {provider}")
|
| 36 |
+
print(f"Model: {model}")
|
| 37 |
+
print()
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
# Initialize LLM
|
| 41 |
+
llm = get_llm(
|
| 42 |
+
provider=provider, model=model, temperature=DEFAULT_CONFIG["temperature"]
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Run DS-STAR workflow
|
| 46 |
+
final_state = run_ds_star(
|
| 47 |
+
query=query,
|
| 48 |
+
llm=llm,
|
| 49 |
+
max_iterations=max_iterations,
|
| 50 |
+
thread_id="ds-star-main-session",
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
if final_state:
|
| 54 |
+
print("\n✅ Workflow completed successfully!")
|
| 55 |
+
return 0
|
| 56 |
+
else:
|
| 57 |
+
print("\n❌ Workflow failed!")
|
| 58 |
+
return 1
|
| 59 |
+
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"\n❌ Fatal error: {str(e)}")
|
| 62 |
+
import traceback
|
| 63 |
+
|
| 64 |
+
traceback.print_exc()
|
| 65 |
+
return 1
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
if __name__ == "__main__":
|
| 69 |
+
sys.exit(main())
|
pyproject.toml
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[project]
|
| 2 |
+
name = "ds-star"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "DS-STAR: Multi-Agent System for Automated Data Science Tasks"
|
| 5 |
+
readme = "README.md"
|
| 6 |
+
requires-python = ">=3.10"
|
| 7 |
+
dependencies = [
|
| 8 |
+
"python-dotenv>=1.0.0",
|
| 9 |
+
"langchain>=0.3.0",
|
| 10 |
+
"langchain-anthropic>=0.3.0",
|
| 11 |
+
"langchain-core>=0.3.0",
|
| 12 |
+
"langchain-google-genai>=2.0.0",
|
| 13 |
+
"langchain-openai>=0.3.0",
|
| 14 |
+
"langgraph>=0.2.0",
|
| 15 |
+
"pandas>=2.0.0",
|
| 16 |
+
"gradio>=5.0.0",
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
+
[project.scripts]
|
| 20 |
+
ds-star = "app:create_gradio_app"
|
| 21 |
+
|
| 22 |
+
[project.optional-dependencies]
|
| 23 |
+
dev = [
|
| 24 |
+
"pytest>=7.0.0",
|
| 25 |
+
"black>=24.0.0",
|
| 26 |
+
"ruff>=0.5.0",
|
| 27 |
+
]
|
requirements.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# DS-STAR Dependencies
|
| 2 |
+
# For Hugging Face Spaces deployment
|
| 3 |
+
|
| 4 |
+
# Core dependencies
|
| 5 |
+
python-dotenv>=1.0.0
|
| 6 |
+
langchain>=0.3.0
|
| 7 |
+
langchain-anthropic>=0.3.0
|
| 8 |
+
langchain-core>=0.3.0
|
| 9 |
+
langchain-google-genai>=2.0.0
|
| 10 |
+
langchain-openai>=0.3.0
|
| 11 |
+
langgraph>=0.2.0
|
| 12 |
+
pandas>=2.0.0
|
| 13 |
+
|
| 14 |
+
# Web interface
|
| 15 |
+
gradio>=5.0.0
|
| 16 |
+
|
| 17 |
+
# Additional utilities
|
| 18 |
+
numpy>=1.20.0
|
src/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
"""DS-STAR multi-agent system for data science tasks."""
|
src/agents/__init__.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Agent modules for DS-STAR system."""
|
| 2 |
+
|
| 3 |
+
from .analyzer_agent import analyzer_node, test_analyzer
|
| 4 |
+
from .coder_agent import coder_node, test_coder
|
| 5 |
+
from .finalyzer_agent import finalyzer_node, test_finalyzer
|
| 6 |
+
from .planner_agent import planner_node, test_planner
|
| 7 |
+
from .router_agent import backtrack_node, router_node, test_router
|
| 8 |
+
from .verifier_agent import test_verifier, verifier_node
|
| 9 |
+
|
| 10 |
+
__all__ = [
|
| 11 |
+
"analyzer_node",
|
| 12 |
+
"planner_node",
|
| 13 |
+
"coder_node",
|
| 14 |
+
"verifier_node",
|
| 15 |
+
"router_node",
|
| 16 |
+
"backtrack_node",
|
| 17 |
+
"finalyzer_node",
|
| 18 |
+
"test_analyzer",
|
| 19 |
+
"test_planner",
|
| 20 |
+
"test_coder",
|
| 21 |
+
"test_verifier",
|
| 22 |
+
"test_router",
|
| 23 |
+
"test_finalyzer",
|
| 24 |
+
]
|
src/agents/analyzer_agent.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Analyzer Agent: Analyzes data files and generates descriptions.
|
| 3 |
+
|
| 4 |
+
This agent runs once at the beginning to understand available data.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
from langchain_core.messages import AIMessage
|
| 11 |
+
|
| 12 |
+
from ..utils.code_execution import execute_with_debug
|
| 13 |
+
from ..utils.formatters import extract_code, gemini_text
|
| 14 |
+
from ..utils.state import DSStarState
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def analyzer_node(state: DSStarState) -> dict:
|
| 18 |
+
"""
|
| 19 |
+
Analyzer Agent Node: Analyzes all data files in the data/ directory.
|
| 20 |
+
|
| 21 |
+
For each file, generates and executes Python code to:
|
| 22 |
+
- Load the file
|
| 23 |
+
- Print structure, types, and sample data
|
| 24 |
+
- Capture essential information
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
state: Current DSStarState
|
| 28 |
+
|
| 29 |
+
Returns:
|
| 30 |
+
Dictionary with updated state fields:
|
| 31 |
+
- data_descriptions: Dict mapping filename to analysis result
|
| 32 |
+
- messages: Agent communication messages
|
| 33 |
+
- next: Next node to visit ("planner" or "__end__")
|
| 34 |
+
"""
|
| 35 |
+
print("=" * 60)
|
| 36 |
+
print("DATA ANALYZER AGENT STARTING...")
|
| 37 |
+
print("=" * 60)
|
| 38 |
+
|
| 39 |
+
data_dir = "data/"
|
| 40 |
+
descriptions = {}
|
| 41 |
+
|
| 42 |
+
# Check if data directory exists
|
| 43 |
+
if not os.path.exists(data_dir):
|
| 44 |
+
print(f"Error: {data_dir} directory not found")
|
| 45 |
+
return {
|
| 46 |
+
"data_descriptions": {"error": "Data directory not found"},
|
| 47 |
+
"messages": [AIMessage(content="Error: data/ directory not found")],
|
| 48 |
+
"next": "__end__",
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
# Get list of files
|
| 52 |
+
files = [
|
| 53 |
+
f for f in os.listdir(data_dir) if os.path.isfile(os.path.join(data_dir, f))
|
| 54 |
+
]
|
| 55 |
+
|
| 56 |
+
if not files:
|
| 57 |
+
print(f"Error: No files found in {data_dir}")
|
| 58 |
+
return {
|
| 59 |
+
"data_descriptions": {"error": "No data files found"},
|
| 60 |
+
"messages": [AIMessage(content="Error: No files in data/ directory")],
|
| 61 |
+
"next": "__end__",
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
print(f"Found {len(files)} files to analyze")
|
| 65 |
+
|
| 66 |
+
# Analyze each file
|
| 67 |
+
for filename in files:
|
| 68 |
+
filepath = os.path.join(data_dir, filename)
|
| 69 |
+
file_ext = Path(filepath).suffix.lower()
|
| 70 |
+
|
| 71 |
+
print(f"\nAnalyzing: {filename}")
|
| 72 |
+
|
| 73 |
+
# Generate analysis script
|
| 74 |
+
analysis_prompt = f"""Generate a Python script to analyze the file: {filepath}
|
| 75 |
+
|
| 76 |
+
File type: {file_ext}
|
| 77 |
+
|
| 78 |
+
Requirements:
|
| 79 |
+
- Load the file using appropriate method for {file_ext} format
|
| 80 |
+
- Print essential information:
|
| 81 |
+
* Data structure and types
|
| 82 |
+
* Column names (for structured data like CSV, Excel)
|
| 83 |
+
* First 3-5 rows/examples
|
| 84 |
+
* Shape/size information
|
| 85 |
+
- Handle common formats: CSV, JSON, Excel, TXT, MD
|
| 86 |
+
- Use pandas for structured data
|
| 87 |
+
- No try-except blocks
|
| 88 |
+
- All files are in 'data/' directory
|
| 89 |
+
- Print output clearly
|
| 90 |
+
|
| 91 |
+
Provide ONLY the Python code in a markdown code block."""
|
| 92 |
+
|
| 93 |
+
try:
|
| 94 |
+
# Get LLM response
|
| 95 |
+
response = state["llm"].invoke(analysis_prompt)
|
| 96 |
+
|
| 97 |
+
# Handle different response formats (Gemini vs OpenAI)
|
| 98 |
+
if hasattr(response, "content") and isinstance(response.content, list):
|
| 99 |
+
# Gemini format
|
| 100 |
+
response_text = gemini_text(response)
|
| 101 |
+
elif hasattr(response, "content"):
|
| 102 |
+
response_text = response.content
|
| 103 |
+
else:
|
| 104 |
+
response_text = str(response)
|
| 105 |
+
|
| 106 |
+
code = extract_code(response_text)
|
| 107 |
+
|
| 108 |
+
# Execute with debugging
|
| 109 |
+
result = execute_with_debug(code, state["llm"], is_analysis=True)
|
| 110 |
+
|
| 111 |
+
descriptions[filename] = result
|
| 112 |
+
print(f"✓ Successfully analyzed {filename}")
|
| 113 |
+
|
| 114 |
+
except Exception as e:
|
| 115 |
+
descriptions[filename] = f"Error analyzing file: {str(e)}"
|
| 116 |
+
print(f"✗ Failed to analyze {filename}: {str(e)}")
|
| 117 |
+
|
| 118 |
+
print("\n" + "=" * 60)
|
| 119 |
+
print(f"ANALYSIS COMPLETE: {len(files)} files processed")
|
| 120 |
+
print("=" * 60)
|
| 121 |
+
|
| 122 |
+
return {
|
| 123 |
+
"data_descriptions": descriptions,
|
| 124 |
+
"messages": [AIMessage(content=f"Analyzed {len(files)} data files")],
|
| 125 |
+
"next": "planner",
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# Standalone test function
|
| 130 |
+
def test_analyzer(llm, data_dir: str = "data/"):
|
| 131 |
+
"""
|
| 132 |
+
Test the analyzer agent independently.
|
| 133 |
+
|
| 134 |
+
Args:
|
| 135 |
+
llm: LLM instance
|
| 136 |
+
data_dir: Directory containing data files
|
| 137 |
+
|
| 138 |
+
Returns:
|
| 139 |
+
Dictionary with analysis results
|
| 140 |
+
"""
|
| 141 |
+
# Create minimal test state
|
| 142 |
+
test_state = {
|
| 143 |
+
"llm": llm,
|
| 144 |
+
"query": "Test query",
|
| 145 |
+
"data_descriptions": {},
|
| 146 |
+
"plan": [],
|
| 147 |
+
"current_code": "",
|
| 148 |
+
"execution_result": "",
|
| 149 |
+
"is_sufficient": False,
|
| 150 |
+
"router_decision": "",
|
| 151 |
+
"iteration": 0,
|
| 152 |
+
"max_iterations": 20,
|
| 153 |
+
"messages": [],
|
| 154 |
+
"next": "analyzer",
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
result = analyzer_node(test_state)
|
| 158 |
+
|
| 159 |
+
print("\n" + "=" * 60)
|
| 160 |
+
print("ANALYZER TEST RESULTS")
|
| 161 |
+
print("=" * 60)
|
| 162 |
+
for filename, description in result["data_descriptions"].items():
|
| 163 |
+
print(f"\n{filename}:")
|
| 164 |
+
print("-" * 60)
|
| 165 |
+
print(description)
|
| 166 |
+
|
| 167 |
+
return result
|
src/agents/coder_agent.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Coder Agent: Implements the plan as executable Python code.
|
| 3 |
+
|
| 4 |
+
This agent generates Python code that implements all steps in the current plan.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from langchain_core.messages import AIMessage
|
| 8 |
+
|
| 9 |
+
from ..utils.code_execution import execute_with_debug
|
| 10 |
+
from ..utils.formatters import extract_code, format_data_descriptions, format_plan
|
| 11 |
+
from ..utils.state import DSStarState
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def coder_node(state: DSStarState) -> dict:
|
| 15 |
+
"""
|
| 16 |
+
Coder Agent Node: Generates and executes Python code for the plan.
|
| 17 |
+
|
| 18 |
+
On first call: Generates code implementing all plan steps
|
| 19 |
+
On subsequent calls: Updates code to include new plan steps
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
state: Current DSStarState
|
| 23 |
+
|
| 24 |
+
Returns:
|
| 25 |
+
Dictionary with updated state fields:
|
| 26 |
+
- current_code: Generated Python code
|
| 27 |
+
- execution_result: Output from code execution
|
| 28 |
+
- messages: Agent communication messages
|
| 29 |
+
- next: Next node to visit ("verifier")
|
| 30 |
+
"""
|
| 31 |
+
print("=" * 60)
|
| 32 |
+
print("CODER AGENT STARTING...")
|
| 33 |
+
print("=" * 60)
|
| 34 |
+
|
| 35 |
+
data_context = format_data_descriptions(state["data_descriptions"])
|
| 36 |
+
plan_text = format_plan(state["plan"])
|
| 37 |
+
|
| 38 |
+
is_initial = state["current_code"] == ""
|
| 39 |
+
|
| 40 |
+
if is_initial:
|
| 41 |
+
print("Generating INITIAL code implementation...")
|
| 42 |
+
prompt = f"""You are an expert Python developer for data science.
|
| 43 |
+
|
| 44 |
+
Available Data Files:
|
| 45 |
+
{data_context}
|
| 46 |
+
|
| 47 |
+
Plan to Implement:
|
| 48 |
+
{plan_text}
|
| 49 |
+
|
| 50 |
+
Task: Write a Python script that implements ALL steps in the plan.
|
| 51 |
+
|
| 52 |
+
Requirements:
|
| 53 |
+
- Use pandas for data manipulation
|
| 54 |
+
- All files are in 'data/' directory
|
| 55 |
+
- Print intermediate results for each step
|
| 56 |
+
- No try-except blocks
|
| 57 |
+
- Clean, readable code
|
| 58 |
+
|
| 59 |
+
Provide ONLY the Python code in a markdown code block."""
|
| 60 |
+
else:
|
| 61 |
+
print(f"Updating code to implement {len(state['plan'])} steps...")
|
| 62 |
+
prompt = f"""You are an expert Python developer for data science.
|
| 63 |
+
|
| 64 |
+
Available Data Files:
|
| 65 |
+
{data_context}
|
| 66 |
+
|
| 67 |
+
Complete Plan:
|
| 68 |
+
{plan_text}
|
| 69 |
+
|
| 70 |
+
Previous Code:
|
| 71 |
+
{state["current_code"]}
|
| 72 |
+
|
| 73 |
+
Task: Update the code to implement the COMPLETE current plan.
|
| 74 |
+
Build upon the previous code, extending it to include all plan steps.
|
| 75 |
+
|
| 76 |
+
Requirements:
|
| 77 |
+
- Use pandas for data manipulation
|
| 78 |
+
- All files are in 'data/' directory
|
| 79 |
+
- Print intermediate and final results
|
| 80 |
+
- No try-except blocks
|
| 81 |
+
- Clean, readable code
|
| 82 |
+
|
| 83 |
+
Provide ONLY the updated Python code in a markdown code block."""
|
| 84 |
+
|
| 85 |
+
try:
|
| 86 |
+
# Get LLM response
|
| 87 |
+
response = state["llm"].invoke(prompt)
|
| 88 |
+
|
| 89 |
+
# Handle different response formats
|
| 90 |
+
if hasattr(response, "content") and isinstance(response.content, list):
|
| 91 |
+
from ..utils.formatters import gemini_text
|
| 92 |
+
|
| 93 |
+
response_text = gemini_text(response)
|
| 94 |
+
elif hasattr(response, "content"):
|
| 95 |
+
response_text = response.content
|
| 96 |
+
else:
|
| 97 |
+
response_text = str(response)
|
| 98 |
+
|
| 99 |
+
code = extract_code(response_text)
|
| 100 |
+
|
| 101 |
+
print("\nGenerated Code:")
|
| 102 |
+
print("-" * 60)
|
| 103 |
+
print(code[:200] + "..." if len(code) > 200 else code)
|
| 104 |
+
print("-" * 60)
|
| 105 |
+
|
| 106 |
+
print("\nExecuting code...")
|
| 107 |
+
|
| 108 |
+
# Execute with debugging
|
| 109 |
+
result = execute_with_debug(
|
| 110 |
+
code, state["llm"], is_analysis=False, data_context=data_context
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
print("\nExecution Result:")
|
| 114 |
+
print("-" * 60)
|
| 115 |
+
print(result[:200] + "..." if len(result) > 200 else result)
|
| 116 |
+
print("-" * 60)
|
| 117 |
+
print("=" * 60)
|
| 118 |
+
|
| 119 |
+
return {
|
| 120 |
+
"current_code": code,
|
| 121 |
+
"execution_result": result,
|
| 122 |
+
"messages": [AIMessage(content="Code executed")],
|
| 123 |
+
"next": "verifier",
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
except Exception as e:
|
| 127 |
+
print(f"\n✗ Coder error: {str(e)}")
|
| 128 |
+
return {
|
| 129 |
+
"messages": [AIMessage(content=f"Coder error: {str(e)}")],
|
| 130 |
+
"next": "__end__",
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
# Standalone test function
|
| 135 |
+
def test_coder(llm, query: str, data_descriptions: dict, plan: list):
|
| 136 |
+
"""
|
| 137 |
+
Test the coder agent independently.
|
| 138 |
+
|
| 139 |
+
Args:
|
| 140 |
+
llm: LLM instance
|
| 141 |
+
query: User query
|
| 142 |
+
data_descriptions: Dict of filename -> description
|
| 143 |
+
plan: List of plan steps to implement
|
| 144 |
+
|
| 145 |
+
Returns:
|
| 146 |
+
Dictionary with coder results
|
| 147 |
+
"""
|
| 148 |
+
# Create minimal test state
|
| 149 |
+
test_state = {
|
| 150 |
+
"llm": llm,
|
| 151 |
+
"query": query,
|
| 152 |
+
"data_descriptions": data_descriptions,
|
| 153 |
+
"plan": plan,
|
| 154 |
+
"current_code": "",
|
| 155 |
+
"execution_result": "",
|
| 156 |
+
"is_sufficient": False,
|
| 157 |
+
"router_decision": "",
|
| 158 |
+
"iteration": 0,
|
| 159 |
+
"max_iterations": 20,
|
| 160 |
+
"messages": [],
|
| 161 |
+
"next": "coder",
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
result = coder_node(test_state)
|
| 165 |
+
|
| 166 |
+
print("\n" + "=" * 60)
|
| 167 |
+
print("CODER TEST RESULTS")
|
| 168 |
+
print("=" * 60)
|
| 169 |
+
print("Code:")
|
| 170 |
+
print(result.get("current_code", "No code generated"))
|
| 171 |
+
print("\nExecution Result:")
|
| 172 |
+
print(result.get("execution_result", "No result"))
|
| 173 |
+
|
| 174 |
+
return result
|
src/agents/finalyzer_agent.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Finalyzer Agent: Creates final polished solution with clear output.
|
| 3 |
+
|
| 4 |
+
This agent runs when the verifier confirms the plan is sufficient.
|
| 5 |
+
It generates a final version of the code with improved formatting and output.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from langchain_core.messages import AIMessage
|
| 9 |
+
|
| 10 |
+
from ..utils.code_execution import execute_code_safely
|
| 11 |
+
from ..utils.formatters import extract_code, format_data_descriptions, gemini_text
|
| 12 |
+
from ..utils.state import DSStarState
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def finalyzer_node(state: DSStarState) -> dict:
|
| 16 |
+
"""
|
| 17 |
+
Finalyzer Agent Node: Creates final polished solution.
|
| 18 |
+
|
| 19 |
+
Takes the working code and creates a final version with:
|
| 20 |
+
- Clear answer to the original question
|
| 21 |
+
- Proper output formatting
|
| 22 |
+
- Self-contained executable code
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
state: Current DSStarState
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
Dictionary with updated state fields:
|
| 29 |
+
- current_code: Final polished code
|
| 30 |
+
- execution_result: Final execution output
|
| 31 |
+
- messages: Agent communication messages
|
| 32 |
+
- next: "__end__" (workflow complete)
|
| 33 |
+
"""
|
| 34 |
+
print("=" * 60)
|
| 35 |
+
print("FINALYZER AGENT STARTING...")
|
| 36 |
+
print("=" * 60)
|
| 37 |
+
|
| 38 |
+
data_context = format_data_descriptions(state["data_descriptions"])
|
| 39 |
+
|
| 40 |
+
prompt = f"""You are an expert data analyst creating final solutions.
|
| 41 |
+
|
| 42 |
+
Original Question: {state["query"]}
|
| 43 |
+
|
| 44 |
+
Available Data:
|
| 45 |
+
{data_context}
|
| 46 |
+
|
| 47 |
+
Working Code:
|
| 48 |
+
{state["current_code"]}
|
| 49 |
+
|
| 50 |
+
Execution Result:
|
| 51 |
+
{state["execution_result"]}
|
| 52 |
+
|
| 53 |
+
Task: Create a final version of the code that:
|
| 54 |
+
1. Clearly prints the answer to the question
|
| 55 |
+
2. Includes proper formatting of the output
|
| 56 |
+
3. Is self-contained and executable
|
| 57 |
+
4. Has clear print statements
|
| 58 |
+
|
| 59 |
+
Provide ONLY the final Python code in a markdown code block."""
|
| 60 |
+
|
| 61 |
+
try:
|
| 62 |
+
# Get LLM response
|
| 63 |
+
response = state["llm"].invoke(prompt)
|
| 64 |
+
|
| 65 |
+
# Handle different response formats
|
| 66 |
+
if hasattr(response, "content") and isinstance(response.content, list):
|
| 67 |
+
response_text = gemini_text(response)
|
| 68 |
+
elif hasattr(response, "content"):
|
| 69 |
+
response_text = response.content
|
| 70 |
+
else:
|
| 71 |
+
response_text = str(response)
|
| 72 |
+
|
| 73 |
+
final_code = extract_code(response_text)
|
| 74 |
+
|
| 75 |
+
print("\nFinal Code Generated:")
|
| 76 |
+
print("-" * 60)
|
| 77 |
+
print(final_code[:300] + "..." if len(final_code) > 300 else final_code)
|
| 78 |
+
print("-" * 60)
|
| 79 |
+
|
| 80 |
+
# Execute final code
|
| 81 |
+
print("\nExecuting final code...")
|
| 82 |
+
success, stdout, stderr = execute_code_safely(final_code)
|
| 83 |
+
|
| 84 |
+
if success:
|
| 85 |
+
final_result = stdout
|
| 86 |
+
print("\n✓ Final execution successful")
|
| 87 |
+
else:
|
| 88 |
+
# If final execution fails, use previous result
|
| 89 |
+
print("\n⚠ Final execution failed, using previous result")
|
| 90 |
+
final_result = state["execution_result"]
|
| 91 |
+
|
| 92 |
+
print("\nFinal Result:")
|
| 93 |
+
print("-" * 60)
|
| 94 |
+
print(final_result[:300] + "..." if len(final_result) > 300 else final_result)
|
| 95 |
+
print("-" * 60)
|
| 96 |
+
print("=" * 60)
|
| 97 |
+
print("SOLUTION COMPLETE ✓")
|
| 98 |
+
print("=" * 60)
|
| 99 |
+
|
| 100 |
+
return {
|
| 101 |
+
"current_code": final_code,
|
| 102 |
+
"execution_result": final_result,
|
| 103 |
+
"messages": [AIMessage(content="Solution finalized")],
|
| 104 |
+
"next": "__end__",
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
except Exception as e:
|
| 108 |
+
# On error, return current state
|
| 109 |
+
print(f"\n✗ Finalyzer error: {str(e)}")
|
| 110 |
+
print("Using current solution as final")
|
| 111 |
+
return {
|
| 112 |
+
"messages": [
|
| 113 |
+
AIMessage(content=f"Finalyzer error: {str(e)}, using current solution")
|
| 114 |
+
],
|
| 115 |
+
"next": "__end__",
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# Standalone test function
|
| 120 |
+
def test_finalyzer(
|
| 121 |
+
llm, query: str, data_descriptions: dict, current_code: str, execution_result: str
|
| 122 |
+
):
|
| 123 |
+
"""
|
| 124 |
+
Test the finalyzer agent independently.
|
| 125 |
+
|
| 126 |
+
Args:
|
| 127 |
+
llm: LLM instance
|
| 128 |
+
query: User query
|
| 129 |
+
data_descriptions: Dict of filename -> description
|
| 130 |
+
current_code: Working code to finalize
|
| 131 |
+
execution_result: Current execution result
|
| 132 |
+
|
| 133 |
+
Returns:
|
| 134 |
+
Dictionary with finalyzer results
|
| 135 |
+
"""
|
| 136 |
+
# Create minimal test state
|
| 137 |
+
test_state = {
|
| 138 |
+
"llm": llm,
|
| 139 |
+
"query": query,
|
| 140 |
+
"data_descriptions": data_descriptions,
|
| 141 |
+
"plan": [],
|
| 142 |
+
"current_code": current_code,
|
| 143 |
+
"execution_result": execution_result,
|
| 144 |
+
"is_sufficient": True,
|
| 145 |
+
"router_decision": "",
|
| 146 |
+
"iteration": 0,
|
| 147 |
+
"max_iterations": 20,
|
| 148 |
+
"messages": [],
|
| 149 |
+
"next": "finalyzer",
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
result = finalyzer_node(test_state)
|
| 153 |
+
|
| 154 |
+
print("\n" + "=" * 60)
|
| 155 |
+
print("FINALYZER TEST RESULTS")
|
| 156 |
+
print("=" * 60)
|
| 157 |
+
print("Final Code:")
|
| 158 |
+
print(result.get("current_code", "No code"))
|
| 159 |
+
print("\nFinal Result:")
|
| 160 |
+
print(result.get("execution_result", "No result"))
|
| 161 |
+
|
| 162 |
+
return result
|
src/agents/planner_agent.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Planner Agent: Generates next plan step to answer the query.
|
| 3 |
+
|
| 4 |
+
This agent generates ONE step at a time based on:
|
| 5 |
+
- The original query
|
| 6 |
+
- Available data files
|
| 7 |
+
- Previously completed steps (if any)
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
from langchain_core.messages import AIMessage
|
| 11 |
+
|
| 12 |
+
from ..utils.formatters import format_data_descriptions, format_plan, gemini_text
|
| 13 |
+
from ..utils.state import DSStarState, PlanStep
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def planner_node(state: DSStarState) -> dict:
|
| 17 |
+
"""
|
| 18 |
+
Planner Agent Node: Generates the next step in the plan.
|
| 19 |
+
|
| 20 |
+
On first call: Generates initial step to start answering the query
|
| 21 |
+
On subsequent calls: Generates next step based on progress so far
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
state: Current DSStarState
|
| 25 |
+
|
| 26 |
+
Returns:
|
| 27 |
+
Dictionary with updated state fields:
|
| 28 |
+
- plan: Updated plan with new step appended
|
| 29 |
+
- messages: Agent communication messages
|
| 30 |
+
- next: Next node to visit ("coder")
|
| 31 |
+
"""
|
| 32 |
+
print("=" * 60)
|
| 33 |
+
print("PLANNER AGENT STARTING...")
|
| 34 |
+
print("=" * 60)
|
| 35 |
+
|
| 36 |
+
is_initial = len(state["plan"]) == 0
|
| 37 |
+
data_context = format_data_descriptions(state["data_descriptions"])
|
| 38 |
+
|
| 39 |
+
if is_initial:
|
| 40 |
+
print("Generating INITIAL plan step...")
|
| 41 |
+
prompt = f"""You are an expert data analyst.
|
| 42 |
+
|
| 43 |
+
Question to answer: {state["query"]}
|
| 44 |
+
|
| 45 |
+
Available Data Files:
|
| 46 |
+
{data_context}
|
| 47 |
+
|
| 48 |
+
Task: Generate list of simple, executable steps to start answering this question.
|
| 49 |
+
Examples of good steps:
|
| 50 |
+
- "Load the transactions.csv file"
|
| 51 |
+
- "Read and explore the sales data"
|
| 52 |
+
|
| 53 |
+
Provide ONLY the step description (one sentence) in one line in bullet points, no explanation."""
|
| 54 |
+
else:
|
| 55 |
+
print(f"Generating NEXT step (current plan has {len(state['plan'])} steps)...")
|
| 56 |
+
plan_text = format_plan(state["plan"])
|
| 57 |
+
|
| 58 |
+
prompt = f"""You are an expert data analyst.
|
| 59 |
+
|
| 60 |
+
Question to answer: {state["query"]}
|
| 61 |
+
|
| 62 |
+
Available Data Files:
|
| 63 |
+
{data_context}
|
| 64 |
+
|
| 65 |
+
Current Plan (completed steps):
|
| 66 |
+
{plan_text}
|
| 67 |
+
|
| 68 |
+
Last Execution Result:
|
| 69 |
+
{state["execution_result"][:500]}...
|
| 70 |
+
|
| 71 |
+
Task: Suggest the NEXT step to progress toward answering the question.
|
| 72 |
+
Make it simple and executable (one clear action).
|
| 73 |
+
|
| 74 |
+
Provide ONLY the next step description (one sentence), no explanation."""
|
| 75 |
+
|
| 76 |
+
try:
|
| 77 |
+
# Get LLM response
|
| 78 |
+
response = state["llm"].invoke(prompt)
|
| 79 |
+
|
| 80 |
+
# Handle different response formats
|
| 81 |
+
if hasattr(response, "content") and isinstance(response.content, list):
|
| 82 |
+
response_text = gemini_text(response)
|
| 83 |
+
elif hasattr(response, "content"):
|
| 84 |
+
response_text = response.content
|
| 85 |
+
else:
|
| 86 |
+
response_text = str(response)
|
| 87 |
+
|
| 88 |
+
# Create new step
|
| 89 |
+
new_step = PlanStep(
|
| 90 |
+
step_number=len(state["plan"]), description=response_text.strip()
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Add new step to existing plan
|
| 94 |
+
updated_plan = state["plan"] + [new_step]
|
| 95 |
+
|
| 96 |
+
print(
|
| 97 |
+
f"\n✓ Generated step {new_step['step_number'] + 1}: {new_step['description']}"
|
| 98 |
+
)
|
| 99 |
+
print("=" * 60)
|
| 100 |
+
|
| 101 |
+
return {
|
| 102 |
+
"plan": updated_plan,
|
| 103 |
+
"messages": [
|
| 104 |
+
AIMessage(content=f"Added step {new_step['step_number'] + 1}")
|
| 105 |
+
],
|
| 106 |
+
"next": "coder",
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
except Exception as e:
|
| 110 |
+
print(f"✗ Planner error: {str(e)}")
|
| 111 |
+
return {
|
| 112 |
+
"messages": [AIMessage(content=f"Planner error: {str(e)}")],
|
| 113 |
+
"next": "__end__",
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# Standalone test function
|
| 118 |
+
def test_planner(llm, query: str, data_descriptions: dict, existing_plan: list = None):
|
| 119 |
+
"""
|
| 120 |
+
Test the planner agent independently.
|
| 121 |
+
|
| 122 |
+
Args:
|
| 123 |
+
llm: LLM instance
|
| 124 |
+
query: User query
|
| 125 |
+
data_descriptions: Dict of filename -> description
|
| 126 |
+
existing_plan: Optional existing plan steps
|
| 127 |
+
|
| 128 |
+
Returns:
|
| 129 |
+
Dictionary with planner results
|
| 130 |
+
"""
|
| 131 |
+
# Create minimal test state
|
| 132 |
+
test_state = {
|
| 133 |
+
"llm": llm,
|
| 134 |
+
"query": query,
|
| 135 |
+
"data_descriptions": data_descriptions,
|
| 136 |
+
"plan": existing_plan or [],
|
| 137 |
+
"current_code": "",
|
| 138 |
+
"execution_result": "",
|
| 139 |
+
"is_sufficient": False,
|
| 140 |
+
"router_decision": "",
|
| 141 |
+
"iteration": 0,
|
| 142 |
+
"max_iterations": 20,
|
| 143 |
+
"messages": [],
|
| 144 |
+
"next": "planner",
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
result = planner_node(test_state)
|
| 148 |
+
|
| 149 |
+
print("\n" + "=" * 60)
|
| 150 |
+
print("PLANNER TEST RESULTS")
|
| 151 |
+
print("=" * 60)
|
| 152 |
+
print(f"Updated Plan ({len(result.get('plan', []))} steps):")
|
| 153 |
+
print(format_plan(result.get("plan", [])))
|
| 154 |
+
|
| 155 |
+
return result
|
src/agents/router_agent.py
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Router Agent: Decides how to improve an insufficient plan.
|
| 3 |
+
|
| 4 |
+
When the verifier determines the plan is insufficient, the router decides:
|
| 5 |
+
- "Add Step": Add a new step to the plan
|
| 6 |
+
- "Step N": Backtrack to step N and fix it
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import re
|
| 10 |
+
|
| 11 |
+
from langchain_core.messages import AIMessage
|
| 12 |
+
|
| 13 |
+
from ..utils.formatters import format_data_descriptions, format_plan, gemini_text
|
| 14 |
+
from ..utils.state import DSStarState
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def router_node(state: DSStarState) -> dict:
|
| 18 |
+
"""
|
| 19 |
+
Router Agent Node: Decides how to improve the plan.
|
| 20 |
+
|
| 21 |
+
Analyzes the current situation and determines whether to:
|
| 22 |
+
1. Add a new step to the plan
|
| 23 |
+
2. Backtrack and fix an existing step
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
state: Current DSStarState
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
Dictionary with updated state fields:
|
| 30 |
+
- router_decision: "Add Step" or "Step N"
|
| 31 |
+
- iteration: Incremented iteration count
|
| 32 |
+
- messages: Agent communication messages
|
| 33 |
+
- next: "planner" (add step) or "backtrack" (fix step)
|
| 34 |
+
"""
|
| 35 |
+
print("=" * 60)
|
| 36 |
+
print("ROUTER AGENT STARTING...")
|
| 37 |
+
print("=" * 60)
|
| 38 |
+
|
| 39 |
+
data_context = format_data_descriptions(state["data_descriptions"])
|
| 40 |
+
plan_text = format_plan(state["plan"])
|
| 41 |
+
|
| 42 |
+
prompt = f"""You are an expert data analyst router.
|
| 43 |
+
|
| 44 |
+
The current plan is INSUFFICIENT to answer the question.
|
| 45 |
+
|
| 46 |
+
Original Question: {state["query"]}
|
| 47 |
+
|
| 48 |
+
Available Data:
|
| 49 |
+
{data_context}
|
| 50 |
+
|
| 51 |
+
Current Plan:
|
| 52 |
+
{plan_text}
|
| 53 |
+
|
| 54 |
+
Execution Result:
|
| 55 |
+
{state["execution_result"][:500]}
|
| 56 |
+
|
| 57 |
+
Task: Decide how to improve the plan:
|
| 58 |
+
1. If a current step is WRONG or needs fixing: Answer "Step N" (where N is the step number, e.g., "Step 2")
|
| 59 |
+
2. If we need to ADD a NEW step: Answer "Add Step"
|
| 60 |
+
|
| 61 |
+
Answer with ONLY: "Step 1", "Step 2", etc. OR "Add Step"
|
| 62 |
+
No explanation needed."""
|
| 63 |
+
|
| 64 |
+
try:
|
| 65 |
+
# Get LLM response
|
| 66 |
+
response = state["llm"].invoke(prompt)
|
| 67 |
+
|
| 68 |
+
# Handle different response formats
|
| 69 |
+
if hasattr(response, "content") and isinstance(response.content, list):
|
| 70 |
+
response_text = gemini_text(response)
|
| 71 |
+
elif hasattr(response, "content"):
|
| 72 |
+
response_text = response.content
|
| 73 |
+
else:
|
| 74 |
+
response_text = str(response)
|
| 75 |
+
|
| 76 |
+
# Parse decision
|
| 77 |
+
response_lower = response_text.strip().lower()
|
| 78 |
+
if "add step" in response_lower:
|
| 79 |
+
decision = "Add Step"
|
| 80 |
+
next_node = "planner"
|
| 81 |
+
else:
|
| 82 |
+
# Try to extract step number
|
| 83 |
+
match = re.search(r"step\s+(\d+)", response_lower)
|
| 84 |
+
if match:
|
| 85 |
+
decision = f"Step {match.group(1)}"
|
| 86 |
+
next_node = "backtrack"
|
| 87 |
+
else:
|
| 88 |
+
# Default to adding new step
|
| 89 |
+
decision = "Add Step"
|
| 90 |
+
next_node = "planner"
|
| 91 |
+
|
| 92 |
+
print(f"\nRouter Decision: {decision}")
|
| 93 |
+
print(
|
| 94 |
+
f"Next Action: {'Backtrack' if next_node == 'backtrack' else 'Add New Step'}"
|
| 95 |
+
)
|
| 96 |
+
print("=" * 60)
|
| 97 |
+
|
| 98 |
+
return {
|
| 99 |
+
"router_decision": decision,
|
| 100 |
+
"messages": [AIMessage(content=f"Router: {decision}")],
|
| 101 |
+
"iteration": state["iteration"] + 1,
|
| 102 |
+
"next": next_node,
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
except Exception as e:
|
| 106 |
+
# On error, default to adding new step
|
| 107 |
+
print(f"\n✗ Router error: {str(e)}")
|
| 108 |
+
print("Defaulting to 'Add Step'")
|
| 109 |
+
return {
|
| 110 |
+
"router_decision": "Add Step",
|
| 111 |
+
"messages": [AIMessage(content=f"Router error, adding step: {str(e)}")],
|
| 112 |
+
"iteration": state["iteration"] + 1,
|
| 113 |
+
"next": "planner",
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def backtrack_node(state: DSStarState) -> dict:
|
| 118 |
+
"""
|
| 119 |
+
Backtrack Node: Truncates plan to remove incorrect steps.
|
| 120 |
+
|
| 121 |
+
When router identifies a wrong step, this node:
|
| 122 |
+
1. Parses the step number from router_decision
|
| 123 |
+
2. Truncates the plan to remove that step and all subsequent steps
|
| 124 |
+
3. Routes back to planner to regenerate from that point
|
| 125 |
+
|
| 126 |
+
Args:
|
| 127 |
+
state: Current DSStarState
|
| 128 |
+
|
| 129 |
+
Returns:
|
| 130 |
+
Dictionary with updated state fields:
|
| 131 |
+
- plan: Truncated plan
|
| 132 |
+
- messages: Agent communication messages
|
| 133 |
+
- next: "planner" to regenerate from truncation point
|
| 134 |
+
"""
|
| 135 |
+
print("=" * 60)
|
| 136 |
+
print("BACKTRACK NODE ACTIVATING...")
|
| 137 |
+
print("=" * 60)
|
| 138 |
+
|
| 139 |
+
try:
|
| 140 |
+
# Extract step number from router decision
|
| 141 |
+
match = re.search(r"step\s+(\d+)", state["router_decision"].lower())
|
| 142 |
+
if match:
|
| 143 |
+
step_num = int(match.group(1))
|
| 144 |
+
else:
|
| 145 |
+
# If parsing fails, just add new step
|
| 146 |
+
print("Failed to parse step number, adding new step instead")
|
| 147 |
+
return {
|
| 148 |
+
"messages": [
|
| 149 |
+
AIMessage(content="Backtrack parsing failed, adding new step")
|
| 150 |
+
],
|
| 151 |
+
"next": "planner",
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
# Truncate plan to steps before the wrong one
|
| 155 |
+
# Keep steps 0 to (step_num - 2), which are steps 1 to (step_num - 1) in human counting
|
| 156 |
+
truncated_plan = state["plan"][: step_num - 1] if step_num > 1 else []
|
| 157 |
+
|
| 158 |
+
print(
|
| 159 |
+
f"Truncating plan from {len(state['plan'])} to {len(truncated_plan)} steps"
|
| 160 |
+
)
|
| 161 |
+
print(f"Removed step {step_num} and beyond")
|
| 162 |
+
print("=" * 60)
|
| 163 |
+
|
| 164 |
+
# Return the truncated plan (replaces entire plan, not appends)
|
| 165 |
+
return {
|
| 166 |
+
"plan": truncated_plan,
|
| 167 |
+
"messages": [AIMessage(content=f"Backtracked to step {step_num - 1}")],
|
| 168 |
+
"next": "planner",
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
except Exception as e:
|
| 172 |
+
print(f"✗ Backtrack error: {str(e)}")
|
| 173 |
+
return {
|
| 174 |
+
"messages": [AIMessage(content=f"Backtrack error: {str(e)}, continuing")],
|
| 175 |
+
"next": "planner",
|
| 176 |
+
}
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
# Standalone test function
|
| 180 |
+
def test_router(
|
| 181 |
+
llm, query: str, data_descriptions: dict, plan: list, execution_result: str
|
| 182 |
+
):
|
| 183 |
+
"""
|
| 184 |
+
Test the router agent independently.
|
| 185 |
+
|
| 186 |
+
Args:
|
| 187 |
+
llm: LLM instance
|
| 188 |
+
query: User query
|
| 189 |
+
data_descriptions: Dict of filename -> description
|
| 190 |
+
plan: Current plan steps
|
| 191 |
+
execution_result: Result from code execution
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
Dictionary with router results
|
| 195 |
+
"""
|
| 196 |
+
# Create minimal test state
|
| 197 |
+
test_state = {
|
| 198 |
+
"llm": llm,
|
| 199 |
+
"query": query,
|
| 200 |
+
"data_descriptions": data_descriptions,
|
| 201 |
+
"plan": plan,
|
| 202 |
+
"current_code": "",
|
| 203 |
+
"execution_result": execution_result,
|
| 204 |
+
"is_sufficient": False,
|
| 205 |
+
"router_decision": "",
|
| 206 |
+
"iteration": 0,
|
| 207 |
+
"max_iterations": 20,
|
| 208 |
+
"messages": [],
|
| 209 |
+
"next": "router",
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
result = router_node(test_state)
|
| 213 |
+
|
| 214 |
+
print("\n" + "=" * 60)
|
| 215 |
+
print("ROUTER TEST RESULTS")
|
| 216 |
+
print("=" * 60)
|
| 217 |
+
print(f"Decision: {result.get('router_decision', 'unknown')}")
|
| 218 |
+
print(f"Next Node: {result.get('next', 'unknown')}")
|
| 219 |
+
|
| 220 |
+
return result
|
src/agents/verifier_agent.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Verifier Agent: Checks if the current plan and implementation sufficiently answer the query.
|
| 3 |
+
|
| 4 |
+
This agent evaluates whether the work done so far is enough to answer the original question.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from langchain_core.messages import AIMessage
|
| 8 |
+
|
| 9 |
+
from ..utils.formatters import format_plan, gemini_text
|
| 10 |
+
from ..utils.state import DSStarState
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def verifier_node(state: DSStarState) -> dict:
|
| 14 |
+
"""
|
| 15 |
+
Verifier Agent Node: Determines if plan sufficiently answers the query.
|
| 16 |
+
|
| 17 |
+
Analyzes:
|
| 18 |
+
- Original query
|
| 19 |
+
- Current plan
|
| 20 |
+
- Code implementation
|
| 21 |
+
- Execution results
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
state: Current DSStarState
|
| 25 |
+
|
| 26 |
+
Returns:
|
| 27 |
+
Dictionary with updated state fields:
|
| 28 |
+
- is_sufficient: Boolean indicating if work is complete
|
| 29 |
+
- messages: Agent communication messages
|
| 30 |
+
- next: "finalyzer" if sufficient, "router" if not
|
| 31 |
+
"""
|
| 32 |
+
print("=" * 60)
|
| 33 |
+
print("VERIFIER AGENT STARTING...")
|
| 34 |
+
print("=" * 60)
|
| 35 |
+
|
| 36 |
+
plan_text = format_plan(state["plan"])
|
| 37 |
+
|
| 38 |
+
prompt = f"""You are an expert data analyst verifier.
|
| 39 |
+
|
| 40 |
+
Original Question: {state["query"]}
|
| 41 |
+
|
| 42 |
+
Current Plan:
|
| 43 |
+
{plan_text}
|
| 44 |
+
|
| 45 |
+
Implementation Code:
|
| 46 |
+
{state["current_code"]}
|
| 47 |
+
|
| 48 |
+
Execution Result:
|
| 49 |
+
{state["execution_result"][:1000]}
|
| 50 |
+
|
| 51 |
+
Task: Verify if this plan and implementation are SUFFICIENT to fully answer the question.
|
| 52 |
+
|
| 53 |
+
Consider:
|
| 54 |
+
- Does the plan address all aspects of the question?
|
| 55 |
+
- Does the execution result contain the answer?
|
| 56 |
+
- Is any additional analysis needed?
|
| 57 |
+
|
| 58 |
+
Answer with ONLY one word: "Yes" or "No"
|
| 59 |
+
- "Yes" if sufficient to answer the question
|
| 60 |
+
- "No" if more analysis is needed"""
|
| 61 |
+
|
| 62 |
+
try:
|
| 63 |
+
# Get LLM response
|
| 64 |
+
response = state["llm"].invoke(prompt)
|
| 65 |
+
|
| 66 |
+
# Handle different response formats
|
| 67 |
+
if hasattr(response, "content") and isinstance(response.content, list):
|
| 68 |
+
response_text = gemini_text(response)
|
| 69 |
+
elif hasattr(response, "content"):
|
| 70 |
+
response_text = response.content
|
| 71 |
+
else:
|
| 72 |
+
response_text = str(response)
|
| 73 |
+
|
| 74 |
+
response_lower = response_text.strip().lower()
|
| 75 |
+
is_sufficient = "yes" in response_lower
|
| 76 |
+
|
| 77 |
+
status = "SUFFICIENT ✓" if is_sufficient else "INSUFFICIENT ✗"
|
| 78 |
+
print(f"\nVerification Result: {status}")
|
| 79 |
+
print("=" * 60)
|
| 80 |
+
|
| 81 |
+
next_node = "finalyzer" if is_sufficient else "router"
|
| 82 |
+
|
| 83 |
+
return {
|
| 84 |
+
"is_sufficient": is_sufficient,
|
| 85 |
+
"messages": [
|
| 86 |
+
AIMessage(
|
| 87 |
+
content=f"Verification: {'Sufficient' if is_sufficient else 'Insufficient'}"
|
| 88 |
+
)
|
| 89 |
+
],
|
| 90 |
+
"next": next_node,
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
except Exception as e:
|
| 94 |
+
# On error, assume insufficient and continue
|
| 95 |
+
print(f"\n✗ Verifier error: {str(e)}")
|
| 96 |
+
print("Defaulting to insufficient, continuing...")
|
| 97 |
+
return {
|
| 98 |
+
"is_sufficient": False,
|
| 99 |
+
"messages": [AIMessage(content=f"Verifier error: {str(e)}, continuing...")],
|
| 100 |
+
"next": "router",
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# Standalone test function
|
| 105 |
+
def test_verifier(llm, query: str, plan: list, code: str, execution_result: str):
|
| 106 |
+
"""
|
| 107 |
+
Test the verifier agent independently.
|
| 108 |
+
|
| 109 |
+
Args:
|
| 110 |
+
llm: LLM instance
|
| 111 |
+
query: User query
|
| 112 |
+
plan: List of plan steps
|
| 113 |
+
code: Generated code
|
| 114 |
+
execution_result: Result from code execution
|
| 115 |
+
|
| 116 |
+
Returns:
|
| 117 |
+
Dictionary with verifier results
|
| 118 |
+
"""
|
| 119 |
+
# Create minimal test state
|
| 120 |
+
test_state = {
|
| 121 |
+
"llm": llm,
|
| 122 |
+
"query": query,
|
| 123 |
+
"data_descriptions": {},
|
| 124 |
+
"plan": plan,
|
| 125 |
+
"current_code": code,
|
| 126 |
+
"execution_result": execution_result,
|
| 127 |
+
"is_sufficient": False,
|
| 128 |
+
"router_decision": "",
|
| 129 |
+
"iteration": 0,
|
| 130 |
+
"max_iterations": 20,
|
| 131 |
+
"messages": [],
|
| 132 |
+
"next": "verifier",
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
result = verifier_node(test_state)
|
| 136 |
+
|
| 137 |
+
print("\n" + "=" * 60)
|
| 138 |
+
print("VERIFIER TEST RESULTS")
|
| 139 |
+
print("=" * 60)
|
| 140 |
+
print(f"Is Sufficient: {result.get('is_sufficient', False)}")
|
| 141 |
+
print(f"Next Node: {result.get('next', 'unknown')}")
|
| 142 |
+
|
| 143 |
+
return result
|
src/config/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Configuration package."""
|
| 2 |
+
|
| 3 |
+
from .llm_config import DEFAULT_CONFIG, get_llm
|
| 4 |
+
|
| 5 |
+
__all__ = ["get_llm", "DEFAULT_CONFIG"]
|
src/config/llm_config.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Configuration for DS-STAR system.
|
| 3 |
+
Centralizes LLM setup and system parameters.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
from typing import Optional
|
| 8 |
+
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
|
| 11 |
+
load_dotenv()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_llm(
|
| 15 |
+
provider: str = "google",
|
| 16 |
+
model: Optional[str] = None,
|
| 17 |
+
api_key: Optional[str] = None,
|
| 18 |
+
temperature: float = 0,
|
| 19 |
+
base_url: Optional[str] = None,
|
| 20 |
+
):
|
| 21 |
+
"""
|
| 22 |
+
Get configured LLM instance.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
provider: LLM provider ("google", "openai", "anthropic")
|
| 26 |
+
model: Model name (uses default if not specified)
|
| 27 |
+
api_key: API key (uses environment variable if not specified)
|
| 28 |
+
temperature: Temperature for generation
|
| 29 |
+
base_url: Custom base URL for OpenAI-compatible APIs
|
| 30 |
+
|
| 31 |
+
Returns:
|
| 32 |
+
Configured LLM instance
|
| 33 |
+
"""
|
| 34 |
+
if provider == "google":
|
| 35 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 36 |
+
|
| 37 |
+
default_model = "gemini-flash-latest"
|
| 38 |
+
api_key = api_key or os.getenv("GOOGLE_API_KEY", "")
|
| 39 |
+
|
| 40 |
+
return ChatGoogleGenerativeAI(
|
| 41 |
+
model=model or default_model,
|
| 42 |
+
temperature=temperature,
|
| 43 |
+
google_api_key=api_key,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
elif provider == "openai":
|
| 47 |
+
from langchain_openai import ChatOpenAI
|
| 48 |
+
|
| 49 |
+
default_model = "gpt-4"
|
| 50 |
+
api_key = api_key or os.getenv("OPENAI_API_KEY")
|
| 51 |
+
|
| 52 |
+
# Use provided base_url, then env var, then default
|
| 53 |
+
effective_base_url = base_url or os.getenv(
|
| 54 |
+
"LLM_BASE_URL",
|
| 55 |
+
"https://api.openai.com/v1",
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
return ChatOpenAI(
|
| 59 |
+
model=model or default_model,
|
| 60 |
+
temperature=temperature,
|
| 61 |
+
api_key=api_key,
|
| 62 |
+
base_url=effective_base_url,
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
elif provider == "anthropic":
|
| 66 |
+
from langchain_anthropic import ChatAnthropic
|
| 67 |
+
|
| 68 |
+
default_model = "claude-3-5-sonnet-20241022"
|
| 69 |
+
api_key = api_key or os.getenv("ANTHROPIC_API_KEY")
|
| 70 |
+
|
| 71 |
+
return ChatAnthropic(
|
| 72 |
+
model=model or default_model,
|
| 73 |
+
temperature=temperature,
|
| 74 |
+
api_key=api_key,
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
else:
|
| 78 |
+
raise ValueError(
|
| 79 |
+
f"Unknown provider: {provider}. Choose from: google, openai, anthropic"
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# Default configuration
|
| 84 |
+
DEFAULT_CONFIG = {
|
| 85 |
+
"max_iterations": 20,
|
| 86 |
+
"provider": "openai",
|
| 87 |
+
"model": "google/gemini-2.5-flash",
|
| 88 |
+
"temperature": 0,
|
| 89 |
+
"data_dir": "data/",
|
| 90 |
+
}
|
src/graph.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
DS-STAR Graph: Connects all agents into a workflow.
|
| 3 |
+
|
| 4 |
+
This module builds the LangGraph StateGraph that orchestrates the multi-agent system.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from typing import Literal
|
| 8 |
+
|
| 9 |
+
from langgraph.checkpoint.memory import MemorySaver
|
| 10 |
+
from langgraph.graph import END, StateGraph
|
| 11 |
+
|
| 12 |
+
from .agents.analyzer_agent import analyzer_node
|
| 13 |
+
from .agents.coder_agent import coder_node
|
| 14 |
+
from .agents.finalyzer_agent import finalyzer_node
|
| 15 |
+
from .agents.planner_agent import planner_node
|
| 16 |
+
from .agents.router_agent import backtrack_node, router_node
|
| 17 |
+
from .agents.verifier_agent import verifier_node
|
| 18 |
+
from .utils.state import DSStarState
|
| 19 |
+
|
| 20 |
+
# ==================== CONDITIONAL ROUTING FUNCTIONS ====================
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def route_after_analyzer(state: DSStarState) -> Literal["planner", "__end__"]:
|
| 24 |
+
"""
|
| 25 |
+
Route after analyzer based on success.
|
| 26 |
+
|
| 27 |
+
If analyzer found errors, end workflow.
|
| 28 |
+
Otherwise, proceed to planner.
|
| 29 |
+
"""
|
| 30 |
+
if "error" in state.get("data_descriptions", {}):
|
| 31 |
+
return "__end__"
|
| 32 |
+
return state.get("next", "planner")
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def route_after_planner(state: DSStarState) -> Literal["coder", "__end__"]:
|
| 36 |
+
"""Route after planner to coder."""
|
| 37 |
+
return state.get("next", "coder")
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def route_after_coder(state: DSStarState) -> Literal["verifier", "__end__"]:
|
| 41 |
+
"""Route after coder to verifier."""
|
| 42 |
+
return state.get("next", "verifier")
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def route_after_verifier(
|
| 46 |
+
state: DSStarState,
|
| 47 |
+
) -> Literal["router", "finalyzer", "__end__"]:
|
| 48 |
+
"""
|
| 49 |
+
Route after verifier based on sufficiency and iteration count.
|
| 50 |
+
|
| 51 |
+
If max iterations reached, go to finalyzer.
|
| 52 |
+
If sufficient, go to finalyzer.
|
| 53 |
+
Otherwise, go to router to decide next action.
|
| 54 |
+
"""
|
| 55 |
+
# Check max iterations
|
| 56 |
+
if state["iteration"] >= state["max_iterations"]:
|
| 57 |
+
print(f"\n⚠ Max iterations ({state['max_iterations']}) reached, finalizing...")
|
| 58 |
+
return "finalyzer"
|
| 59 |
+
|
| 60 |
+
return state.get("next", "router")
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def route_after_router(state: DSStarState) -> Literal["planner", "backtrack"]:
|
| 64 |
+
"""
|
| 65 |
+
Route after router based on decision.
|
| 66 |
+
|
| 67 |
+
If router says "Add Step", go to planner.
|
| 68 |
+
If router says "Step N", go to backtrack.
|
| 69 |
+
"""
|
| 70 |
+
return state.get("next", "planner")
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# ==================== GRAPH BUILDER ====================
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def build_ds_star_graph(llm, max_iterations: int = 20):
|
| 77 |
+
"""
|
| 78 |
+
Constructs the LangGraph workflow for DS-STAR.
|
| 79 |
+
|
| 80 |
+
The workflow follows this pattern:
|
| 81 |
+
1. Analyzer: Analyze data files (runs once)
|
| 82 |
+
2. Planner: Generate next plan step
|
| 83 |
+
3. Coder: Implement plan as code
|
| 84 |
+
4. Verifier: Check if sufficient
|
| 85 |
+
5. If insufficient:
|
| 86 |
+
a. Router: Decide to add step or backtrack
|
| 87 |
+
b. Backtrack (optional): Remove wrong steps
|
| 88 |
+
c. Go back to Planner
|
| 89 |
+
6. If sufficient:
|
| 90 |
+
Finalyzer: Create polished final solution
|
| 91 |
+
|
| 92 |
+
Args:
|
| 93 |
+
llm: LLM instance (e.g., ChatOpenAI, ChatGoogleGenerativeAI)
|
| 94 |
+
max_iterations: Maximum refinement iterations (default: 20)
|
| 95 |
+
|
| 96 |
+
Returns:
|
| 97 |
+
Compiled LangGraph application with checkpointing
|
| 98 |
+
"""
|
| 99 |
+
# Initialize graph with state schema
|
| 100 |
+
workflow = StateGraph(DSStarState)
|
| 101 |
+
|
| 102 |
+
# Add all agent nodes
|
| 103 |
+
workflow.add_node("analyzer", analyzer_node)
|
| 104 |
+
workflow.add_node("planner", planner_node)
|
| 105 |
+
workflow.add_node("coder", coder_node)
|
| 106 |
+
workflow.add_node("verifier", verifier_node)
|
| 107 |
+
workflow.add_node("router", router_node)
|
| 108 |
+
workflow.add_node("backtrack", backtrack_node)
|
| 109 |
+
workflow.add_node("finalyzer", finalyzer_node)
|
| 110 |
+
|
| 111 |
+
# Set entry point
|
| 112 |
+
workflow.set_entry_point("analyzer")
|
| 113 |
+
|
| 114 |
+
# Add conditional edges with proper routing
|
| 115 |
+
workflow.add_conditional_edges(
|
| 116 |
+
"analyzer", route_after_analyzer, {"planner": "planner", "__end__": END}
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
workflow.add_conditional_edges(
|
| 120 |
+
"planner", route_after_planner, {"coder": "coder", "__end__": END}
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
workflow.add_conditional_edges(
|
| 124 |
+
"coder", route_after_coder, {"verifier": "verifier", "__end__": END}
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
workflow.add_conditional_edges(
|
| 128 |
+
"verifier",
|
| 129 |
+
route_after_verifier,
|
| 130 |
+
{"router": "router", "finalyzer": "finalyzer", "__end__": END},
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
workflow.add_conditional_edges(
|
| 134 |
+
"router", route_after_router, {"planner": "planner", "backtrack": "backtrack"}
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
workflow.add_edge("backtrack", "planner")
|
| 138 |
+
workflow.add_edge("finalyzer", END)
|
| 139 |
+
|
| 140 |
+
# Add memory/checkpointing
|
| 141 |
+
memory = MemorySaver()
|
| 142 |
+
|
| 143 |
+
# Compile graph
|
| 144 |
+
app = workflow.compile(checkpointer=memory)
|
| 145 |
+
|
| 146 |
+
return app
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def create_initial_state(query: str, llm, max_iterations: int = 20) -> DSStarState:
|
| 150 |
+
"""
|
| 151 |
+
Create initial state for the DS-STAR workflow.
|
| 152 |
+
|
| 153 |
+
Args:
|
| 154 |
+
query: User's question to answer
|
| 155 |
+
llm: LLM instance
|
| 156 |
+
max_iterations: Maximum refinement iterations
|
| 157 |
+
|
| 158 |
+
Returns:
|
| 159 |
+
Initial DSStarState dictionary
|
| 160 |
+
"""
|
| 161 |
+
return {
|
| 162 |
+
"query": query,
|
| 163 |
+
"data_descriptions": {},
|
| 164 |
+
"plan": [],
|
| 165 |
+
"current_code": "",
|
| 166 |
+
"execution_result": "",
|
| 167 |
+
"is_sufficient": False,
|
| 168 |
+
"router_decision": "",
|
| 169 |
+
"iteration": 0,
|
| 170 |
+
"max_iterations": max_iterations,
|
| 171 |
+
"messages": [],
|
| 172 |
+
"next": "analyzer",
|
| 173 |
+
"llm": llm,
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def run_ds_star(
|
| 178 |
+
query: str, llm, max_iterations: int = 20, thread_id: str = "ds-star-1"
|
| 179 |
+
):
|
| 180 |
+
"""
|
| 181 |
+
Run the complete DS-STAR workflow.
|
| 182 |
+
|
| 183 |
+
Args:
|
| 184 |
+
query: User's question to answer
|
| 185 |
+
llm: LLM instance
|
| 186 |
+
max_iterations: Maximum refinement iterations
|
| 187 |
+
thread_id: Unique thread ID for checkpointing
|
| 188 |
+
|
| 189 |
+
Returns:
|
| 190 |
+
Final state after workflow completion
|
| 191 |
+
"""
|
| 192 |
+
print("=" * 60)
|
| 193 |
+
print("DS-STAR MULTI-AGENT SYSTEM")
|
| 194 |
+
print("=" * 60)
|
| 195 |
+
print(f"Query: {query}")
|
| 196 |
+
print(f"Max Iterations: {max_iterations}")
|
| 197 |
+
print("=" * 60)
|
| 198 |
+
|
| 199 |
+
# Build graph
|
| 200 |
+
app = build_ds_star_graph(llm, max_iterations)
|
| 201 |
+
|
| 202 |
+
# Create initial state
|
| 203 |
+
initial_state = create_initial_state(query, llm, max_iterations)
|
| 204 |
+
|
| 205 |
+
# Run with checkpointing
|
| 206 |
+
config = {"configurable": {"thread_id": thread_id}}
|
| 207 |
+
|
| 208 |
+
try:
|
| 209 |
+
# Execute the workflow
|
| 210 |
+
final_state = app.invoke(initial_state, config)
|
| 211 |
+
|
| 212 |
+
# Display results
|
| 213 |
+
print("\n" + "=" * 60)
|
| 214 |
+
print("FINAL SOLUTION")
|
| 215 |
+
print("=" * 60)
|
| 216 |
+
print("\nGenerated Code:")
|
| 217 |
+
print("-" * 60)
|
| 218 |
+
print(final_state["current_code"])
|
| 219 |
+
print("\n" + "-" * 60)
|
| 220 |
+
print("Execution Result:")
|
| 221 |
+
print("-" * 60)
|
| 222 |
+
print(final_state["execution_result"])
|
| 223 |
+
print("=" * 60)
|
| 224 |
+
|
| 225 |
+
return final_state
|
| 226 |
+
|
| 227 |
+
except Exception as e:
|
| 228 |
+
print(f"\n✗ Error during execution: {str(e)}")
|
| 229 |
+
import traceback
|
| 230 |
+
|
| 231 |
+
traceback.print_exc()
|
| 232 |
+
return None
|
src/utils/__init__.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Utility modules for DS-STAR system."""
|
| 2 |
+
|
| 3 |
+
from .code_execution import execute_code_safely, execute_with_debug
|
| 4 |
+
from .formatters import extract_code, format_data_descriptions, format_plan, gemini_text
|
| 5 |
+
from .state import DSStarState, PlanStep
|
| 6 |
+
|
| 7 |
+
__all__ = [
|
| 8 |
+
"DSStarState",
|
| 9 |
+
"PlanStep",
|
| 10 |
+
"extract_code",
|
| 11 |
+
"format_data_descriptions",
|
| 12 |
+
"format_plan",
|
| 13 |
+
"gemini_text",
|
| 14 |
+
"execute_code_safely",
|
| 15 |
+
"execute_with_debug",
|
| 16 |
+
]
|
src/utils/code_execution.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Code execution utilities with debugging capabilities.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import subprocess
|
| 7 |
+
import sys
|
| 8 |
+
from typing import Tuple
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def execute_code_safely(code: str, timeout: int = 30) -> Tuple[bool, str, str]:
|
| 12 |
+
"""
|
| 13 |
+
Execute Python code safely in a subprocess and capture output.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
code: Python code to execute
|
| 17 |
+
timeout: Maximum execution time in seconds
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
Tuple of (success: bool, stdout: str, stderr: str)
|
| 21 |
+
"""
|
| 22 |
+
temp_file = "temp_script.py"
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
# Write code to temporary file
|
| 26 |
+
with open(temp_file, "w", encoding="utf-8") as f:
|
| 27 |
+
f.write(code)
|
| 28 |
+
|
| 29 |
+
# Execute with subprocess
|
| 30 |
+
result = subprocess.run(
|
| 31 |
+
[sys.executable, temp_file], capture_output=True, text=True, timeout=timeout
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
success = result.returncode == 0
|
| 35 |
+
return success, result.stdout, result.stderr
|
| 36 |
+
|
| 37 |
+
except subprocess.TimeoutExpired:
|
| 38 |
+
return False, "", f"Execution timed out after {timeout} seconds"
|
| 39 |
+
except Exception as e:
|
| 40 |
+
return False, "", f"Execution error: {str(e)}"
|
| 41 |
+
finally:
|
| 42 |
+
# Clean up temp file
|
| 43 |
+
if os.path.exists(temp_file):
|
| 44 |
+
try:
|
| 45 |
+
os.remove(temp_file)
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"Warning: Failed to remove temp file: {str(e)}")
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def execute_with_debug(
|
| 51 |
+
code: str, llm, is_analysis: bool, data_context: str = "", max_attempts: int = 3
|
| 52 |
+
) -> str:
|
| 53 |
+
"""
|
| 54 |
+
Execute code with automatic debugging via LLM.
|
| 55 |
+
|
| 56 |
+
If execution fails, the LLM is asked to fix the error.
|
| 57 |
+
This repeats for up to max_attempts.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
code: Python code to execute
|
| 61 |
+
llm: LLM instance for debugging
|
| 62 |
+
is_analysis: Whether this is data analysis stage (simpler prompts)
|
| 63 |
+
data_context: Context about available data files
|
| 64 |
+
max_attempts: Maximum debugging attempts
|
| 65 |
+
|
| 66 |
+
Returns:
|
| 67 |
+
Execution output or error message
|
| 68 |
+
"""
|
| 69 |
+
from .formatters import extract_code
|
| 70 |
+
|
| 71 |
+
for attempt in range(max_attempts):
|
| 72 |
+
success, stdout, stderr = execute_code_safely(code)
|
| 73 |
+
|
| 74 |
+
if success:
|
| 75 |
+
return stdout if stdout else "Code executed successfully (no output)"
|
| 76 |
+
|
| 77 |
+
# Debug the error
|
| 78 |
+
print(f" Debug attempt {attempt + 1}/{max_attempts}")
|
| 79 |
+
|
| 80 |
+
if is_analysis:
|
| 81 |
+
debug_prompt = f"""Fix this Python code error:
|
| 82 |
+
{code}
|
| 83 |
+
|
| 84 |
+
Error:
|
| 85 |
+
{stderr}
|
| 86 |
+
|
| 87 |
+
Requirements:
|
| 88 |
+
- Fix the error
|
| 89 |
+
- Keep the same functionality
|
| 90 |
+
- No try-except blocks
|
| 91 |
+
- All files are in 'data/' directory
|
| 92 |
+
- Provide ONLY the corrected code in a markdown code block"""
|
| 93 |
+
else:
|
| 94 |
+
debug_prompt = f"""Fix this Python code error:
|
| 95 |
+
|
| 96 |
+
Available Data:
|
| 97 |
+
{data_context}
|
| 98 |
+
|
| 99 |
+
Code with error:
|
| 100 |
+
{code}
|
| 101 |
+
|
| 102 |
+
Error:
|
| 103 |
+
{stderr}
|
| 104 |
+
|
| 105 |
+
Requirements:
|
| 106 |
+
- Fix the error using data context
|
| 107 |
+
- Keep the same functionality
|
| 108 |
+
- No try-except blocks
|
| 109 |
+
- Provide ONLY the corrected code in a markdown code block"""
|
| 110 |
+
|
| 111 |
+
try:
|
| 112 |
+
response = llm.invoke(debug_prompt)
|
| 113 |
+
|
| 114 |
+
# Handle Gemini response format
|
| 115 |
+
if hasattr(response, "content") and isinstance(response.content, list):
|
| 116 |
+
# Gemini returns list of dicts
|
| 117 |
+
from .formatters import gemini_text
|
| 118 |
+
|
| 119 |
+
response_text = gemini_text(response)
|
| 120 |
+
elif hasattr(response, "content"):
|
| 121 |
+
response_text = response.content
|
| 122 |
+
else:
|
| 123 |
+
response_text = str(response)
|
| 124 |
+
|
| 125 |
+
code = extract_code(response_text)
|
| 126 |
+
except Exception as e:
|
| 127 |
+
return f"Debugging failed: {str(e)}"
|
| 128 |
+
|
| 129 |
+
return f"Failed after {max_attempts} attempts. Last error:\n{stderr}"
|
src/utils/formatters.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Utility functions for formatting and extracting data.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def gemini_text(res) -> str:
|
| 7 |
+
"""
|
| 8 |
+
Extract text from Gemini API response.
|
| 9 |
+
|
| 10 |
+
Args:
|
| 11 |
+
res: Gemini API response object
|
| 12 |
+
|
| 13 |
+
Returns:
|
| 14 |
+
Concatenated text from all text parts
|
| 15 |
+
"""
|
| 16 |
+
return "".join(part["text"] for part in res.content if part.get("type") == "text")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def extract_code(response: str) -> str:
|
| 20 |
+
"""
|
| 21 |
+
Extract code from markdown code blocks.
|
| 22 |
+
Handles ```python and ``` formats.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
response: Text response potentially containing code blocks
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
Extracted code string
|
| 29 |
+
"""
|
| 30 |
+
# Try to find python code block first
|
| 31 |
+
if "```python" in response:
|
| 32 |
+
parts = response.split("```python", 1)
|
| 33 |
+
if len(parts) > 1:
|
| 34 |
+
code_part = parts[1].split("```", 1)
|
| 35 |
+
if len(code_part) > 0:
|
| 36 |
+
return code_part[0].strip()
|
| 37 |
+
|
| 38 |
+
# Try generic code block
|
| 39 |
+
elif "```" in response:
|
| 40 |
+
parts = response.split("```", 1)
|
| 41 |
+
if len(parts) > 1:
|
| 42 |
+
code_part = parts[1].split("```", 1)
|
| 43 |
+
if len(code_part) > 0:
|
| 44 |
+
# Remove language identifier if present
|
| 45 |
+
code = code_part[0].strip()
|
| 46 |
+
# Remove first line if it's a language identifier
|
| 47 |
+
lines = code.split("\n")
|
| 48 |
+
if lines and lines[0].strip() in ["python", "py", "python3"]:
|
| 49 |
+
return "\n".join(lines[1:]).strip()
|
| 50 |
+
return code
|
| 51 |
+
|
| 52 |
+
# If no code blocks found, return as is
|
| 53 |
+
return response.strip()
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def format_data_descriptions(descriptions: dict) -> str:
|
| 57 |
+
"""
|
| 58 |
+
Format data descriptions dictionary into readable string.
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
descriptions: Dict mapping filename to description
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
Formatted string with file descriptions
|
| 65 |
+
"""
|
| 66 |
+
if not descriptions:
|
| 67 |
+
return "No data files analyzed yet."
|
| 68 |
+
|
| 69 |
+
formatted_parts = []
|
| 70 |
+
for filename, description in descriptions.items():
|
| 71 |
+
formatted_parts.append(f"## File: {filename}\n{description}\n")
|
| 72 |
+
|
| 73 |
+
return "\n".join(formatted_parts)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def format_plan(plan: list) -> str:
|
| 77 |
+
"""
|
| 78 |
+
Format plan steps into readable string.
|
| 79 |
+
|
| 80 |
+
Args:
|
| 81 |
+
plan: List of PlanStep dictionaries
|
| 82 |
+
|
| 83 |
+
Returns:
|
| 84 |
+
Formatted plan string
|
| 85 |
+
"""
|
| 86 |
+
if not plan:
|
| 87 |
+
return "No plan steps yet."
|
| 88 |
+
|
| 89 |
+
return "\n".join([f"{i + 1}. {step['description']}" for i, step in enumerate(plan)])
|
src/utils/state.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
State schema for DS-STAR multi-agent system.
|
| 3 |
+
Defines the centralized state structure shared across all agents.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import operator
|
| 7 |
+
from typing import Annotated, List, TypedDict
|
| 8 |
+
|
| 9 |
+
from langchain_core.messages import AIMessage, HumanMessage
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class PlanStep(TypedDict):
|
| 13 |
+
"""Individual plan step with number and description"""
|
| 14 |
+
|
| 15 |
+
step_number: int
|
| 16 |
+
description: str
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class DSStarState(TypedDict):
|
| 20 |
+
"""
|
| 21 |
+
Centralized state for DS-STAR pipeline.
|
| 22 |
+
|
| 23 |
+
This state is passed between all agents in the graph.
|
| 24 |
+
Uses reducer pattern for message accumulation.
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
# User input
|
| 28 |
+
query: str
|
| 29 |
+
|
| 30 |
+
# Data file descriptions (from Stage 1 - Analyzer)
|
| 31 |
+
data_descriptions: dict[str, str]
|
| 32 |
+
|
| 33 |
+
# Current plan - list of completed steps
|
| 34 |
+
# NO REDUCER - we need full control for backtracking
|
| 35 |
+
plan: List[PlanStep]
|
| 36 |
+
|
| 37 |
+
# Code and execution
|
| 38 |
+
current_code: str
|
| 39 |
+
execution_result: str
|
| 40 |
+
|
| 41 |
+
# Verification and routing
|
| 42 |
+
is_sufficient: bool
|
| 43 |
+
router_decision: str # "Add Step" or "Step N"
|
| 44 |
+
|
| 45 |
+
# Iteration tracking
|
| 46 |
+
iteration: int
|
| 47 |
+
max_iterations: int
|
| 48 |
+
|
| 49 |
+
# Messages for agent communication (accumulated with reducer)
|
| 50 |
+
messages: Annotated[List[HumanMessage | AIMessage], operator.add]
|
| 51 |
+
|
| 52 |
+
# Next node routing (for internal control flow)
|
| 53 |
+
next: str
|
| 54 |
+
|
| 55 |
+
# LLM instance (shared across all agents)
|
| 56 |
+
llm: object
|
tests/test_complete_workflow.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Comprehensive test for DS-STAR workflow.
|
| 3 |
+
|
| 4 |
+
This test runs the complete multi-agent system to verify:
|
| 5 |
+
1. All agents are properly connected
|
| 6 |
+
2. The graph routing works correctly
|
| 7 |
+
3. The workflow can complete successfully
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import os
|
| 11 |
+
import sys
|
| 12 |
+
|
| 13 |
+
from dotenv import load_dotenv
|
| 14 |
+
|
| 15 |
+
load_dotenv()
|
| 16 |
+
LLM_MODEL = os.getenv("LLM_MODEL", "google/gemini-2.5-flash")
|
| 17 |
+
LLM_API_KEY = os.getenv("LLM_API_KEY", "")
|
| 18 |
+
|
| 19 |
+
# Add parent directory to path
|
| 20 |
+
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
| 21 |
+
|
| 22 |
+
from src.config import get_llm
|
| 23 |
+
from src.graph import run_ds_star
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def test_complete_workflow():
|
| 27 |
+
"""Test the complete DS-STAR workflow."""
|
| 28 |
+
print("=" * 60)
|
| 29 |
+
print("COMPREHENSIVE DS-STAR WORKFLOW TEST")
|
| 30 |
+
print("=" * 60)
|
| 31 |
+
|
| 32 |
+
# Configuration
|
| 33 |
+
query = "What percentage of transactions use credit cards?"
|
| 34 |
+
max_iterations = 10 # Reduced for testing
|
| 35 |
+
|
| 36 |
+
print(f"\nTest Query: {query}")
|
| 37 |
+
print(f"Max Iterations: {max_iterations}")
|
| 38 |
+
print()
|
| 39 |
+
|
| 40 |
+
try:
|
| 41 |
+
# Initialize LLM
|
| 42 |
+
print("Initializing LLM (Gemini 1.5 Flash)...")
|
| 43 |
+
llm = get_llm(
|
| 44 |
+
provider="openai",
|
| 45 |
+
model=LLM_MODEL,
|
| 46 |
+
temperature=0,
|
| 47 |
+
api_key=LLM_API_KEY,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
print("✓ LLM initialized")
|
| 51 |
+
print()
|
| 52 |
+
|
| 53 |
+
# Run workflow
|
| 54 |
+
print("Starting DS-STAR workflow...")
|
| 55 |
+
print("=" * 60)
|
| 56 |
+
|
| 57 |
+
final_state = run_ds_star(
|
| 58 |
+
query=query,
|
| 59 |
+
llm=llm,
|
| 60 |
+
max_iterations=max_iterations,
|
| 61 |
+
thread_id="test-session",
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# Verify results
|
| 65 |
+
print("\n" + "=" * 60)
|
| 66 |
+
print("TEST VERIFICATION")
|
| 67 |
+
print("=" * 60)
|
| 68 |
+
|
| 69 |
+
if final_state is None:
|
| 70 |
+
print("❌ FAILED: Workflow returned None")
|
| 71 |
+
return False
|
| 72 |
+
|
| 73 |
+
# Check that we got results
|
| 74 |
+
checks = [
|
| 75 |
+
("Data descriptions", len(final_state.get("data_descriptions", {})) > 0),
|
| 76 |
+
("Plan generated", len(final_state.get("plan", [])) > 0),
|
| 77 |
+
("Code generated", len(final_state.get("current_code", "")) > 0),
|
| 78 |
+
("Execution result", len(final_state.get("execution_result", "")) > 0),
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
all_passed = True
|
| 82 |
+
for check_name, passed in checks:
|
| 83 |
+
status = "✓" if passed else "✗"
|
| 84 |
+
print(f"{status} {check_name}: {'PASS' if passed else 'FAIL'}")
|
| 85 |
+
all_passed = all_passed and passed
|
| 86 |
+
|
| 87 |
+
print("\n" + "=" * 60)
|
| 88 |
+
if all_passed:
|
| 89 |
+
print("✅ ALL TESTS PASSED")
|
| 90 |
+
print("=" * 60)
|
| 91 |
+
return True
|
| 92 |
+
else:
|
| 93 |
+
print("❌ SOME TESTS FAILED")
|
| 94 |
+
print("=" * 60)
|
| 95 |
+
return False
|
| 96 |
+
|
| 97 |
+
except Exception as e:
|
| 98 |
+
print(f"\n❌ TEST FAILED WITH EXCEPTION: {str(e)}")
|
| 99 |
+
import traceback
|
| 100 |
+
|
| 101 |
+
traceback.print_exc()
|
| 102 |
+
return False
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def main():
|
| 106 |
+
"""Run the test."""
|
| 107 |
+
success = test_complete_workflow()
|
| 108 |
+
return 0 if success else 1
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
if __name__ == "__main__":
|
| 112 |
+
sys.exit(main())
|
uv.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|