Spaces:
Running
on
T4
Running
on
T4
Commit
·
58c492c
1
Parent(s):
b62f0e7
tested
Browse files- .DS_Store +0 -0
- app.py +1301 -0
- packages.txt +3 -0
- requirements.txt +22 -0
- utils/dataops.py +168 -0
- webui.bat +162 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,1301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gc
|
| 3 |
+
import re
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
import traceback
|
| 9 |
+
import math
|
| 10 |
+
import time
|
| 11 |
+
import ast
|
| 12 |
+
import argparse
|
| 13 |
+
import zipfile
|
| 14 |
+
from collections import defaultdict
|
| 15 |
+
from facexlib.utils.misc import download_from_url
|
| 16 |
+
from basicsr.utils.realesrganer import RealESRGANer
|
| 17 |
+
from utils.dataops import auto_split_upscale
|
| 18 |
+
|
| 19 |
+
input_images_limit = 5
|
| 20 |
+
# Define URLs and their corresponding local storage paths
|
| 21 |
+
face_models = {
|
| 22 |
+
"GFPGANv1.4.pth" : ["https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
|
| 23 |
+
"https://github.com/TencentARC/GFPGAN/",
|
| 24 |
+
"""GFPGAN: Towards Real-World Blind Face Restoration and Upscalling of the image with a Generative Facial Prior.
|
| 25 |
+
GFPGAN aims at developing a Practical Algorithm for Real-world Face Restoration.
|
| 26 |
+
It leverages rich and diverse priors encapsulated in a pretrained face GAN (e.g., StyleGAN2) for blind face restoration."""],
|
| 27 |
+
|
| 28 |
+
"RestoreFormer++.ckpt": ["https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer++.ckpt",
|
| 29 |
+
"https://github.com/wzhouxiff/RestoreFormerPlusPlus",
|
| 30 |
+
"""RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Pairs.
|
| 31 |
+
RestoreFormer++ is an extension of RestoreFormer. It proposes to restore a degraded face image with both fidelity and \
|
| 32 |
+
realness by using the powerful fully-spacial attention mechanisms to model the abundant contextual information in the face and \
|
| 33 |
+
its interplay with reconstruction-oriented high-quality priors."""],
|
| 34 |
+
|
| 35 |
+
"CodeFormer.pth" : ["https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth",
|
| 36 |
+
"https://github.com/sczhou/CodeFormer",
|
| 37 |
+
"""CodeFormer: Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022).
|
| 38 |
+
CodeFormer is a Transformer-based model designed to tackle the challenging problem of blind face restoration, where inputs are often severely degraded.
|
| 39 |
+
By framing face restoration as a code prediction task, this approach ensures both improved mapping from degraded inputs to outputs and the generation of visually rich, high-quality faces.
|
| 40 |
+
"""],
|
| 41 |
+
|
| 42 |
+
"GPEN-BFR-512.pth" : ["https://huggingface.co/akhaliq/GPEN-BFR-512/resolve/main/GPEN-BFR-512.pth",
|
| 43 |
+
"https://github.com/yangxy/GPEN",
|
| 44 |
+
"""GPEN: GAN Prior Embedded Network for Blind Face Restoration in the Wild.
|
| 45 |
+
GPEN addresses blind face restoration (BFR) by embedding a GAN into a U-shaped DNN, combining GAN’s ability to generate high-quality images with DNN’s feature extraction.
|
| 46 |
+
This design reconstructs global structure, fine details, and backgrounds from degraded inputs.
|
| 47 |
+
Simple yet effective, GPEN outperforms state-of-the-art methods, delivering realistic results even for severely degraded images."""],
|
| 48 |
+
|
| 49 |
+
"GPEN-BFR-1024.pt" : ["https://www.modelscope.cn/models/iic/cv_gpen_image-portrait-enhancement-hires/resolve/master/pytorch_model.pt",
|
| 50 |
+
"https://www.modelscope.cn/models/iic/cv_gpen_image-portrait-enhancement-hires/files",
|
| 51 |
+
"""The same as GPEN but for 1024 resolution."""],
|
| 52 |
+
|
| 53 |
+
"GPEN-BFR-2048.pt" : ["https://www.modelscope.cn/models/iic/cv_gpen_image-portrait-enhancement-hires/resolve/master/pytorch_model-2048.pt",
|
| 54 |
+
"https://www.modelscope.cn/models/iic/cv_gpen_image-portrait-enhancement-hires/files",
|
| 55 |
+
"""The same as GPEN but for 2048 resolution."""],
|
| 56 |
+
|
| 57 |
+
# legacy model
|
| 58 |
+
"GFPGANv1.3.pth" : ["https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth",
|
| 59 |
+
"https://github.com/TencentARC/GFPGAN/", "The same as GFPGAN but legacy model"],
|
| 60 |
+
"GFPGANv1.2.pth" : ["https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth",
|
| 61 |
+
"https://github.com/TencentARC/GFPGAN/", "The same as GFPGAN but legacy model"],
|
| 62 |
+
"RestoreFormer.ckpt": ["https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer.ckpt",
|
| 63 |
+
"https://github.com/wzhouxiff/RestoreFormerPlusPlus", "The same as RestoreFormer++ but legacy model"],
|
| 64 |
+
}
|
| 65 |
+
upscale_models = {
|
| 66 |
+
# SRVGGNet(Compact)
|
| 67 |
+
"realesr-general-x4v3.pth": ["https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
| 68 |
+
"https://github.com/xinntao/Real-ESRGAN/releases/tag/v0.3.0",
|
| 69 |
+
"""Compression Removal, General Upscaler, JPEG, Realistic, Research, Restoration
|
| 70 |
+
xinntao: add realesr-general-x4v3 and realesr-general-wdn-x4v3. They are very tiny models for general scenes, and they may more robust. But as they are tiny models, their performance may be limited."""],
|
| 71 |
+
|
| 72 |
+
"realesr-animevideov3.pth": ["https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
|
| 73 |
+
"https://github.com/xinntao/Real-ESRGAN/releases/tag/v0.2.5.0",
|
| 74 |
+
"""Anime, Cartoon, Compression Removal, General Upscaler, JPEG, Realistic, Research, Restoration
|
| 75 |
+
xinntao: update the RealESRGAN AnimeVideo-v3 model, which can achieve better results with a faster inference speed."""],
|
| 76 |
+
|
| 77 |
+
"4xLSDIRCompact.pth": ["https://github.com/Phhofm/models/releases/download/4xLSDIRCompact/4xLSDIRCompact.pth",
|
| 78 |
+
"https://github.com/Phhofm/models/releases/tag/4xLSDIRCompact",
|
| 79 |
+
"""Realistic
|
| 80 |
+
Phhofm: Upscale small good quality photos to 4x their size. This is my first ever released self-trained sisr upscaling model."""],
|
| 81 |
+
|
| 82 |
+
"4xLSDIRCompactC.pth": ["https://github.com/Phhofm/models/releases/download/4xLSDIRCompactC/4xLSDIRCompactC.pth",
|
| 83 |
+
"https://github.com/Phhofm/models/releases/tag/4xLSDIRCompactC",
|
| 84 |
+
"""Compression Removal, JPEG, Realistic, Restoration
|
| 85 |
+
Phhofm: 4x photo upscaler that handler jpg compression. Trying to extend my previous model to be able to handle compression (JPG 100-30) by manually altering the training dataset, since 4xLSDIRCompact cant handle compression. Use this instead of 4xLSDIRCompact if your photo has compression (like an image from the web)."""],
|
| 86 |
+
|
| 87 |
+
"4xLSDIRCompactR.pth": ["https://github.com/Phhofm/models/releases/download/4xLSDIRCompactC/4xLSDIRCompactR.pth",
|
| 88 |
+
"https://github.com/Phhofm/models/releases/tag/4xLSDIRCompactC",
|
| 89 |
+
"""Compression Removal, Realistic, Restoration
|
| 90 |
+
Phhofm: 4x photo uspcaler that handles jpg compression, noise and slight. Extending my last 4xLSDIRCompact model to Real-ESRGAN, meaning trained on synthetic data instead to handle more kinds of degradations, it should be able to handle compression, noise, and slight blur."""],
|
| 91 |
+
|
| 92 |
+
"4xLSDIRCompactN.pth": ["https://github.com/Phhofm/models/releases/download/4xLSDIRCompact3/4xLSDIRCompactC3.pth",
|
| 93 |
+
"https://github.com/Phhofm/models/releases/tag/4xLSDIRCompact3",
|
| 94 |
+
"""Realistic
|
| 95 |
+
Phhofm: Upscale good quality input photos to x4 their size. The original 4xLSDIRCompact a bit more trained, cannot handle degradation.
|
| 96 |
+
I am releasing the Series 3 from my 4xLSDIRCompact models. In general my suggestion is, if you have good quality input images use 4xLSDIRCompactN3, otherwise try 4xLSDIRCompactC3 which will be able to handle jpg compression and a bit of blur, or then 4xLSDIRCompactCR3, which is an interpolation between C3 and R3 to be able to handle a bit of noise additionally."""],
|
| 97 |
+
|
| 98 |
+
"4xLSDIRCompactC3.pth": ["https://github.com/Phhofm/models/releases/download/4xLSDIRCompact3/4xLSDIRCompactC3.pth",
|
| 99 |
+
"https://github.com/Phhofm/models/releases/tag/4xLSDIRCompact3",
|
| 100 |
+
"""Compression Removal,
|
| 101 |
+
JPEG, Realistic, Restoration
|
| 102 |
+
Phhofm: Upscale compressed photos to x4 their size. Able to handle JPG compression (30-100).
|
| 103 |
+
I am releasing the Series 3 from my 4xLSDIRCompact models. In general my suggestion is, if you have good quality input images use 4xLSDIRCompactN3, otherwise try 4xLSDIRCompactC3 which will be able to handle jpg compression and a bit of blur, or then 4xLSDIRCompactCR3, which is an interpolation between C3 and R3 to be able to handle a bit of noise additionally."""],
|
| 104 |
+
|
| 105 |
+
"4xLSDIRCompactR3.pth": ["https://github.com/Phhofm/models/releases/download/4xLSDIRCompact3/4xLSDIRCompactR3.pth",
|
| 106 |
+
"https://github.com/Phhofm/models/releases/tag/4xLSDIRCompact3",
|
| 107 |
+
"""Realistic, Restoration
|
| 108 |
+
Phhofm: Upscale (degraded) photos to x4 their size. Trained on synthetic data, meant to handle more degradations.
|
| 109 |
+
I am releasing the Series 3 from my 4xLSDIRCompact models. In general my suggestion is, if you have good quality input images use 4xLSDIRCompactN3, otherwise try 4xLSDIRCompactC3 which will be able to handle jpg compression and a bit of blur, or then 4xLSDIRCompactCR3, which is an interpolation between C3 and R3 to be able to handle a bit of noise additionally."""],
|
| 110 |
+
|
| 111 |
+
"4xLSDIRCompactCR3.pth": ["https://github.com/Phhofm/models/releases/download/4xLSDIRCompact3/4xLSDIRCompactCR3.pth",
|
| 112 |
+
"https://github.com/Phhofm/models/releases/tag/4xLSDIRCompact3",
|
| 113 |
+
"""Phhofm: I am releasing the Series 3 from my 4xLSDIRCompact models. In general my suggestion is, if you have good quality input images use 4xLSDIRCompactN3, otherwise try 4xLSDIRCompactC3 which will be able to handle jpg compression and a bit of blur, or then 4xLSDIRCompactCR3, which is an interpolation between C3 and R3 to be able to handle a bit of noise additionally."""],
|
| 114 |
+
|
| 115 |
+
"2xParimgCompact.pth": ["https://github.com/Phhofm/models/releases/download/2xParimgCompact/2xParimgCompact.pth",
|
| 116 |
+
"https://github.com/Phhofm/models/releases/tag/2xParimgCompact",
|
| 117 |
+
"""Realistic
|
| 118 |
+
Phhofm: A 2x photo upscaling compact model based on Microsoft's ImagePairs. This was one of the earliest models I started training and finished it now for release. As can be seen in the examples, this model will affect colors."""],
|
| 119 |
+
|
| 120 |
+
"1xExposureCorrection_compact.pth": ["https://github.com/Phhofm/models/releases/download/1xExposureCorrection_compact/1xExposureCorrection_compact.pth",
|
| 121 |
+
"https://github.com/Phhofm/models/releases/tag/1xExposureCorrection_compact",
|
| 122 |
+
"""Restoration
|
| 123 |
+
Phhofm: This model is meant as an experiment to see if compact can be used to train on photos to exposure correct those using the pixel, perceptual, color, color and ldl losses. There is no brightness loss. Still it seems to kinda work."""],
|
| 124 |
+
|
| 125 |
+
"1xUnderExposureCorrection_compact.pth": ["https://github.com/Phhofm/models/releases/download/1xExposureCorrection_compact/1xUnderExposureCorrection_compact.pth",
|
| 126 |
+
"https://github.com/Phhofm/models/releases/tag/1xExposureCorrection_compact",
|
| 127 |
+
"""Restoration
|
| 128 |
+
Phhofm: This model is meant as an experiment to see if compact can be used to train on underexposed images to exposure correct those using the pixel, perceptual, color, color and ldl losses. There is no brightness loss. Still it seems to kinda work."""],
|
| 129 |
+
|
| 130 |
+
"1xOverExposureCorrection_compact.pth": ["https://github.com/Phhofm/models/releases/download/1xExposureCorrection_compact/1xOverExposureCorrection_compact.pth",
|
| 131 |
+
"https://github.com/Phhofm/models/releases/tag/1xExposureCorrection_compact",
|
| 132 |
+
"""Restoration
|
| 133 |
+
Phhofm: This model is meant as an experiment to see if compact can be used to train on overexposed images to exposure correct those using the pixel, perceptual, color, color and ldl losses. There is no brightness loss. Still it seems to kinda work."""],
|
| 134 |
+
|
| 135 |
+
"2x-sudo-UltraCompact.pth": ["https://objectstorage.us-phoenix-1.oraclecloud.com/n/ax6ygfvpvzka/b/open-modeldb-files/o/2x-sudo-UltraCompact.pth",
|
| 136 |
+
"https://openmodeldb.info/models/2x-sudo-UltraCompact",
|
| 137 |
+
"""Anime, Cartoon, Restoration
|
| 138 |
+
sudo: Realtime animation restauration and doing stuff like deblur and compression artefact removal.
|
| 139 |
+
My first attempt to make a REALTIME 2x upscaling model while also applying teacher student learning.
|
| 140 |
+
(Teacher: RealESRGANv2-animevideo-xsx2.pth)"""],
|
| 141 |
+
|
| 142 |
+
"2x_AnimeJaNai_HD_V3_SuperUltraCompact.pth": ["https://github.com/the-database/mpv-upscale-2x_animejanai/releases/download/3.0.0/2x_AnimeJaNai_HD_V3_ModelsOnly.zip",
|
| 143 |
+
"https://openmodeldb.info/models/2x-AnimeJaNai-HD-V3-SuperUltraCompact",
|
| 144 |
+
"""Anime, Compression Removal, Restoration
|
| 145 |
+
the-database: Real-time 2x Real-ESRGAN Compact/UltraCompact/SuperUltraCompact models designed for upscaling 1080p anime to 4K.
|
| 146 |
+
The aim of these models is to address scaling, blur, oversharpening, and compression artifacts while upscaling to deliver a result that appears as if the anime was originally mastered in 4K resolution."""],
|
| 147 |
+
|
| 148 |
+
"2x_AnimeJaNai_HD_V3_UltraCompact.pth": ["https://github.com/the-database/mpv-upscale-2x_animejanai/releases/download/3.0.0/2x_AnimeJaNai_HD_V3_ModelsOnly.zip",
|
| 149 |
+
"https://openmodeldb.info/models/2x-AnimeJaNai-HD-V3-UltraCompact",
|
| 150 |
+
"""Anime, Compression Removal, Restoration
|
| 151 |
+
the-database: Real-time 2x Real-ESRGAN Compact/UltraCompact/SuperUltraCompact models designed for upscaling 1080p anime to 4K.
|
| 152 |
+
The aim of these models is to address scaling, blur, oversharpening, and compression artifacts while upscaling to deliver a result that appears as if the anime was originally mastered in 4K resolution."""],
|
| 153 |
+
|
| 154 |
+
"2x_AnimeJaNai_HD_V3_Compact.pth": ["https://github.com/the-database/mpv-upscale-2x_animejanai/releases/download/3.0.0/2x_AnimeJaNai_HD_V3_ModelsOnly.zip",
|
| 155 |
+
"https://openmodeldb.info/models/2x-AnimeJaNai-HD-V3-Compact",
|
| 156 |
+
"""Anime, Compression Removal, Restoration
|
| 157 |
+
the-database: Real-time 2x Real-ESRGAN Compact/UltraCompact/SuperUltraCompact models designed for upscaling 1080p anime to 4K.
|
| 158 |
+
The aim of these models is to address scaling, blur, oversharpening, and compression artifacts while upscaling to deliver a result that appears as if the anime was originally mastered in 4K resolution."""],
|
| 159 |
+
|
| 160 |
+
# RRDBNet
|
| 161 |
+
"RealESRGAN_x4plus_anime_6B.pth": ["https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
|
| 162 |
+
"https://github.com/xinntao/Real-ESRGAN/releases/tag/v0.2.2.4",
|
| 163 |
+
"""Anime, Cartoon, Compression Removal, General Upscaler, JPEG, Realistic, Research, Restoration
|
| 164 |
+
xinntao: We add RealESRGAN_x4plus_anime_6B.pth, which is optimized for anime images with much smaller model size. More details and comparisons with waifu2x are in anime_model.md"""],
|
| 165 |
+
|
| 166 |
+
"RealESRGAN_x2plus.pth" : ["https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
|
| 167 |
+
"https://github.com/xinntao/Real-ESRGAN/releases/tag/v0.2.1",
|
| 168 |
+
"""Compression Removal, General Upscaler, JPEG, Realistic, Research, Restoration
|
| 169 |
+
xinntao: Add RealESRGAN_x2plus.pth model"""],
|
| 170 |
+
|
| 171 |
+
"RealESRNet_x4plus.pth" : ["https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth",
|
| 172 |
+
"https://github.com/xinntao/Real-ESRGAN/releases/tag/v0.1.1",
|
| 173 |
+
"""Compression Removal, General Upscaler, JPEG, Realistic, Research, Restoration
|
| 174 |
+
xinntao: This release is mainly for storing pre-trained models and executable files."""],
|
| 175 |
+
|
| 176 |
+
"RealESRGAN_x4plus.pth" : ["https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
|
| 177 |
+
"https://github.com/xinntao/Real-ESRGAN/releases/tag/v0.1.0",
|
| 178 |
+
"""Compression Removal, General Upscaler, JPEG, Realistic, Research, Restoration
|
| 179 |
+
xinntao: This release is mainly for storing pre-trained models and executable files."""],
|
| 180 |
+
|
| 181 |
+
# ESRGAN(oldRRDB)
|
| 182 |
+
"4x-AnimeSharp.pth": ["https://huggingface.co/utnah/esrgan/resolve/main/4x-AnimeSharp.pth?download=true",
|
| 183 |
+
"https://openmodeldb.info/models/4x-AnimeSharp",
|
| 184 |
+
"""Anime, Cartoon, Text
|
| 185 |
+
Kim2091: Interpolation between 4x-UltraSharp and 4x-TextSharp-v0.5. Works amazingly on anime. It also upscales text, but it's far better with anime content."""],
|
| 186 |
+
|
| 187 |
+
"4x_IllustrationJaNai_V1_ESRGAN_135k.pth": ["https://drive.google.com/uc?export=download&confirm=1&id=1qpioSqBkB_IkSBhEAewSSNFt6qgkBimP",
|
| 188 |
+
"https://openmodeldb.info/models/4x-IllustrationJaNai-V1-DAT2",
|
| 189 |
+
"""Anime, Cartoon, Compression Removal, Dehalftone, General Upscaler, JPEG, Manga, Restoration
|
| 190 |
+
the-database: Model for color images including manga covers and color illustrations, digital art, visual novel art, artbooks, and more.
|
| 191 |
+
DAT2 version is the highest quality version but also the slowest. See the ESRGAN version for faster performance."""],
|
| 192 |
+
|
| 193 |
+
"2x-sudo-RealESRGAN.pth": ["https://objectstorage.us-phoenix-1.oraclecloud.com/n/ax6ygfvpvzka/b/open-modeldb-files/o/2x-sudo-RealESRGAN.pth",
|
| 194 |
+
"https://openmodeldb.info/models/2x-sudo-RealESRGAN",
|
| 195 |
+
"""Anime, Cartoon
|
| 196 |
+
sudo: Tried to make the best 2x model there is for drawings. I think i archived that.
|
| 197 |
+
And yes, it is nearly 3.8 million iterations (probably a record nobody will beat here), took me nearly half a year to train.
|
| 198 |
+
It can happen that in one edge is a noisy pattern in edges. You can use padding/crop for that.
|
| 199 |
+
I aimed for perceptual quality without zooming in like 400%. Since RealESRGAN is 4x, I downscaled these images with bicubic.
|
| 200 |
+
Pretrained: Pretrained_Model_G: RealESRGAN_x4plus_anime_6B.pth / RealESRGAN_x4plus_anime_6B.pth (sudo_RealESRGAN2x_3.332.758_G.pth)"""],
|
| 201 |
+
|
| 202 |
+
"2x-sudo-RealESRGAN-Dropout.pth": ["https://objectstorage.us-phoenix-1.oraclecloud.com/n/ax6ygfvpvzka/b/open-modeldb-files/o/2x-sudo-RealESRGAN-Dropout.pth",
|
| 203 |
+
"https://openmodeldb.info/models/2x-sudo-RealESRGAN-Dropout",
|
| 204 |
+
"""Anime, Cartoon
|
| 205 |
+
sudo: Tried to make the best 2x model there is for drawings. I think i archived that.
|
| 206 |
+
And yes, it is nearly 3.8 million iterations (probably a record nobody will beat here), took me nearly half a year to train.
|
| 207 |
+
It can happen that in one edge is a noisy pattern in edges. You can use padding/crop for that.
|
| 208 |
+
I aimed for perceptual quality without zooming in like 400%. Since RealESRGAN is 4x, I downscaled these images with bicubic.
|
| 209 |
+
Pretrained: Pretrained_Model_G: RealESRGAN_x4plus_anime_6B.pth / RealESRGAN_x4plus_anime_6B.pth (sudo_RealESRGAN2x_3.332.758_G.pth)"""],
|
| 210 |
+
|
| 211 |
+
"4xNomos2_otf_esrgan.pth": ["https://github.com/Phhofm/models/releases/download/4xNomos2_otf_esrgan/4xNomos2_otf_esrgan.pth",
|
| 212 |
+
"https://github.com/Phhofm/models/releases/tag/4xNomos2_otf_esrgan",
|
| 213 |
+
"""Compression Removal, JPEG, Realistic, Restoration
|
| 214 |
+
Phhofm: Restoration, 4x ESRGAN model for photography, trained using the Real-ESRGAN otf degradation pipeline."""],
|
| 215 |
+
|
| 216 |
+
"4xNomosWebPhoto_esrgan.pth": ["https://github.com/Phhofm/models/releases/download/4xNomosWebPhoto_esrgan/4xNomosWebPhoto_esrgan.pth",
|
| 217 |
+
"https://github.com/Phhofm/models/releases/tag/4xNomosWebPhoto_esrgan",
|
| 218 |
+
"""Realistic, Restoration
|
| 219 |
+
Phhofm: Restoration, 4x ESRGAN model for photography, trained with realistic noise, lens blur, jpg and webp re-compression.
|
| 220 |
+
ESRGAN version of 4xNomosWebPhoto_RealPLKSR, trained on the same dataset and in the same way."""],
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
"4x_foolhardy_Remacri.pth": ["https://civitai.com/api/download/models/164821?type=Model&format=PickleTensor",
|
| 224 |
+
"https://openmodeldb.info/models/4x-Remacri",
|
| 225 |
+
"""Original
|
| 226 |
+
FoolhardyVEVO: A creation of BSRGAN with more details and less smoothing, made by interpolating IRL models such as Siax,
|
| 227 |
+
Superscale, Superscale Artisoft, Pixel Perfect, etc. This was, things like skin and other details don't become mushy and blurry."""],
|
| 228 |
+
|
| 229 |
+
"4x_foolhardy_Remacri_ExtraSmoother.pth": ["https://civitai.com/api/download/models/164822?type=Model&format=PickleTensor",
|
| 230 |
+
"https://openmodeldb.info/models/4x-Remacri",
|
| 231 |
+
"""ExtraSmoother
|
| 232 |
+
FoolhardyVEVO: A creation of BSRGAN with more details and less smoothing, made by interpolating IRL models such as Siax,
|
| 233 |
+
Superscale, Superscale Artisoft, Pixel Perfect, etc. This was, things like skin and other details don't become mushy and blurry."""],
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
# DATNet
|
| 237 |
+
"4xNomos8kDAT.pth" : ["https://github.com/Phhofm/models/releases/download/4xNomos8kDAT/4xNomos8kDAT.pth",
|
| 238 |
+
"https://openmodeldb.info/models/4x-Nomos8kDAT",
|
| 239 |
+
"""Anime, Compression Removal, General Upscaler, JPEG, Realistic, Restoration
|
| 240 |
+
Phhofm: A 4x photo upscaler with otf jpg compression, blur and resize, trained on musl's Nomos8k_sfw dataset for realisic sr, this time based on the DAT arch, as a finetune on the official 4x DAT model."""],
|
| 241 |
+
|
| 242 |
+
"4x-DWTP-DS-dat2-v3.pth" : ["https://objectstorage.us-phoenix-1.oraclecloud.com/n/ax6ygfvpvzka/b/open-modeldb-files/o/4x-DWTP-DS-dat2-v3.pth",
|
| 243 |
+
"https://openmodeldb.info/models/4x-DWTP-DS-dat2-v3",
|
| 244 |
+
"""Dehalftone, Restoration
|
| 245 |
+
umzi.x.dead: DAT descreenton model, designed to reduce discrepancies on tiles due to too much loss of the first version, while getting rid of the removal of paper texture"""],
|
| 246 |
+
|
| 247 |
+
"4xBHI_dat2_real.pth" : ["https://github.com/Phhofm/models/releases/download/4xBHI_dat2_real/4xBHI_dat2_real.pth",
|
| 248 |
+
"https://github.com/Phhofm/models/releases/tag/4xBHI_dat2_real",
|
| 249 |
+
"""Compression Removal, JPEG, Realistic
|
| 250 |
+
Phhofm: 4x dat2 upscaling model for web and realistic images. It handles realistic noise, some realistic blur, and webp and jpg (re)compression. Trained on my BHI dataset (390'035 training tiles) with degraded LR subset."""],
|
| 251 |
+
|
| 252 |
+
"4xBHI_dat2_otf.pth" : ["https://github.com/Phhofm/models/releases/download/4xBHI_dat2_otf/4xBHI_dat2_otf.pth",
|
| 253 |
+
"https://github.com/Phhofm/models/releases/tag/4xBHI_dat2_otf",
|
| 254 |
+
"""Compression Removal, JPEG
|
| 255 |
+
Phhofm: 4x dat2 upscaling model, trained with the real-esrgan otf pipeline on my bhi dataset. Handles noise and compression."""],
|
| 256 |
+
|
| 257 |
+
"4xBHI_dat2_multiblur.pth" : ["https://github.com/Phhofm/models/releases/download/4xBHI_dat2_multiblurjpg/4xBHI_dat2_multiblur.pth",
|
| 258 |
+
"https://github.com/Phhofm/models/releases/tag/4xBHI_dat2_multiblurjpg",
|
| 259 |
+
"""Phhofm: the 4xBHI_dat2_multiblur checkpoint (trained to 250000 iters), which cannot handle compression but might give just slightly better output on non-degraded input."""],
|
| 260 |
+
|
| 261 |
+
"4xBHI_dat2_multiblurjpg.pth" : ["https://github.com/Phhofm/models/releases/download/4xBHI_dat2_multiblurjpg/4xBHI_dat2_multiblurjpg.pth",
|
| 262 |
+
"https://github.com/Phhofm/models/releases/tag/4xBHI_dat2_multiblurjpg",
|
| 263 |
+
"""Compression Removal, JPEG
|
| 264 |
+
Phhofm: 4x dat2 upscaling model, trained with down_up,linear, cubic_mitchell, lanczos, gauss and box scaling algos, some average, gaussian and anisotropic blurs and jpg compression. Trained on my BHI sisr dataset."""],
|
| 265 |
+
|
| 266 |
+
"4x_IllustrationJaNai_V1_DAT2_190k.pth": ["https://drive.google.com/uc?export=download&confirm=1&id=1qpioSqBkB_IkSBhEAewSSNFt6qgkBimP",
|
| 267 |
+
"https://openmodeldb.info/models/4x-IllustrationJaNai-V1-DAT2",
|
| 268 |
+
"""Anime, Cartoon, Compression Removal, Dehalftone, General Upscaler, JPEG, Manga, Restoration
|
| 269 |
+
the-database: Model for color images including manga covers and color illustrations, digital art, visual novel art, artbooks, and more.
|
| 270 |
+
DAT2 version is the highest quality version but also the slowest. See the ESRGAN version for faster performance."""],
|
| 271 |
+
|
| 272 |
+
"4x-PBRify_UpscalerDAT2_V1.pth": ["https://github.com/Kim2091/Kim2091-Models/releases/download/4x-PBRify_UpscalerDAT2_V1/4x-PBRify_UpscalerDAT2_V1.pth",
|
| 273 |
+
"https://github.com/Kim2091/Kim2091-Models/releases/tag/4x-PBRify_UpscalerDAT2_V1",
|
| 274 |
+
"""Compression Removal, DDS, Game Textures, Restoration
|
| 275 |
+
Kim2091: Yet another model in the PBRify_Remix series. This is a new upscaler to replace the previous 4x-PBRify_UpscalerSIR-M_V2 model.
|
| 276 |
+
This model far exceeds the quality of the previous, with far more natural detail generation and better reconstruction of lines and edges."""],
|
| 277 |
+
|
| 278 |
+
"4xBHI_dat2_otf_nn.pth": ["https://github.com/Phhofm/models/releases/download/4xBHI_dat2_otf_nn/4xBHI_dat2_otf_nn.pth",
|
| 279 |
+
"https://github.com/Phhofm/models/releases/tag/4xBHI_dat2_otf_nn",
|
| 280 |
+
"""Compression Removal, JPEG
|
| 281 |
+
Phhofm: 4x dat2 upscaling model, trained with the real-esrgan otf pipeline but without noise, on my bhi dataset. Handles resizes, and jpg compression."""],
|
| 282 |
+
|
| 283 |
+
# HAT
|
| 284 |
+
"4xNomos8kSCHAT-L.pth" : ["https://github.com/Phhofm/models/releases/download/4xNomos8kSCHAT/4xNomos8kSCHAT-L.pth",
|
| 285 |
+
"https://openmodeldb.info/models/4x-Nomos8kSCHAT-L",
|
| 286 |
+
"""Anime, Compression Removal, General Upscaler, JPEG, Realistic, Restoration
|
| 287 |
+
Phhofm: 4x photo upscaler with otf jpg compression and blur, trained on musl's Nomos8k_sfw dataset for realisic sr. Since this is a big model, upscaling might take a while."""],
|
| 288 |
+
|
| 289 |
+
"4xNomos8kSCHAT-S.pth" : ["https://github.com/Phhofm/models/releases/download/4xNomos8kSCHAT/4xNomos8kSCHAT-S.pth",
|
| 290 |
+
"https://openmodeldb.info/models/4x-Nomos8kSCHAT-S",
|
| 291 |
+
"""Anime, Compression Removal, General Upscaler, JPEG, Realistic, Restoration
|
| 292 |
+
Phhofm: 4x photo upscaler with otf jpg compression and blur, trained on musl's Nomos8k_sfw dataset for realisic sr. HAT-S version/model."""],
|
| 293 |
+
|
| 294 |
+
"4xNomos8kHAT-L_otf.pth": ["https://github.com/Phhofm/models/releases/download/4xNomos8kHAT-L_otf/4xNomos8kHAT-L_otf.pth",
|
| 295 |
+
"https://openmodeldb.info/models/4x-Nomos8kHAT-L-otf",
|
| 296 |
+
"""Faces, General Upscaler, Realistic, Restoration
|
| 297 |
+
Phhofm: 4x photo upscaler trained with otf, handles some jpg compression, some blur and some noise."""],
|
| 298 |
+
|
| 299 |
+
"4xBHI_small_hat-l.pth": ["https://github.com/Phhofm/models/releases/download/4xBHI_small_hat-l/4xBHI_small_hat-l.pth",
|
| 300 |
+
"https://github.com/Phhofm/models/releases/tag/4xBHI_small_hat-l",
|
| 301 |
+
"""Phhofm: 4x hat-l upscaling model for good quality input. This model does not handle any degradations.
|
| 302 |
+
This model is rather soft, I tried to balance sharpness and faithfulness/non-artifacts.
|
| 303 |
+
For a bit sharper output, but can generate a bit of artifacts, you can try the 4xBHI_small_hat-l_sharp version,
|
| 304 |
+
also included in this release, which might still feel soft if you are used to sharper outputs."""],
|
| 305 |
+
|
| 306 |
+
# RealPLKSR_dysample
|
| 307 |
+
"4xHFA2k_ludvae_realplksr_dysample.pth": ["https://github.com/Phhofm/models/releases/download/4xHFA2k_ludvae_realplksr_dysample/4xHFA2k_ludvae_realplksr_dysample.pth",
|
| 308 |
+
"https://openmodeldb.info/models/4x-HFA2k-ludvae-realplksr-dysample",
|
| 309 |
+
"""Anime, Compression Removal, Restoration
|
| 310 |
+
Phhofm: A Dysample RealPLKSR 4x upscaling model for anime single-image resolution."""],
|
| 311 |
+
|
| 312 |
+
"4xArtFaces_realplksr_dysample.pth" : ["https://github.com/Phhofm/models/releases/download/4xArtFaces_realplksr_dysample/4xArtFaces_realplksr_dysample.pth",
|
| 313 |
+
"https://openmodeldb.info/models/4x-ArtFaces-realplksr-dysample",
|
| 314 |
+
"""ArtFaces
|
| 315 |
+
Phhofm: A Dysample RealPLKSR 4x upscaling model for art / painted faces."""],
|
| 316 |
+
|
| 317 |
+
"4x-PBRify_RPLKSRd_V3.pth" : ["https://github.com/Kim2091/Kim2091-Models/releases/download/4x-PBRify_RPLKSRd_V3/4x-PBRify_RPLKSRd_V3.pth",
|
| 318 |
+
"https://github.com/Kim2091/Kim2091-Models/releases/tag/4x-PBRify_RPLKSRd_V3",
|
| 319 |
+
"""Compression Removal, DDS, Debanding, Dedither, Dehalo, Game Textures, Restoration
|
| 320 |
+
Kim2091: This update brings a new upscaling model, 4x-PBRify_RPLKSRd_V3. This model is roughly 8x faster than the current DAT2 model, while being higher quality.
|
| 321 |
+
It produces far more natural detail, resolves lines and edges more smoothly, and cleans up compression artifacts better.
|
| 322 |
+
As a result of those improvements, PBR is also much improved. It tends to be clearer with less defined artifacts."""],
|
| 323 |
+
|
| 324 |
+
"4xNomos2_realplksr_dysample.pth" : ["https://github.com/Phhofm/models/releases/download/4xNomos2_realplksr_dysample/4xNomos2_realplksr_dysample.pth",
|
| 325 |
+
"https://openmodeldb.info/models/4x-Nomos2-realplksr-dysample",
|
| 326 |
+
"""Compression Removal, JPEG, Realistic, Restoration
|
| 327 |
+
Phhofm: A Dysample RealPLKSR 4x upscaling model that was trained with / handles jpg compression down to 70 on the Nomosv2 dataset, preserves DoF.
|
| 328 |
+
This model affects / saturate colors, which can be counteracted a bit by using wavelet color fix, as used in these examples."""],
|
| 329 |
+
|
| 330 |
+
# RealPLKSR
|
| 331 |
+
"2x-AnimeSharpV2_RPLKSR_Sharp.pth": ["https://github.com/Kim2091/Kim2091-Models/releases/download/2x-AnimeSharpV2_Set/2x-AnimeSharpV2_RPLKSR_Sharp.pth",
|
| 332 |
+
"https://github.com/Kim2091/Kim2091-Models/releases/tag/2x-AnimeSharpV2_Set",
|
| 333 |
+
"""Anime, Compression Removal, Restoration
|
| 334 |
+
Kim2091: This is my first anime model in years. Hopefully you guys can find a good use-case for it.
|
| 335 |
+
RealPLKSR (Higher quality, slower) Sharp: For heavily degraded sources. Sharp models have issues depth of field but are best at removing artifacts
|
| 336 |
+
"""],
|
| 337 |
+
|
| 338 |
+
"2x-AnimeSharpV2_RPLKSR_Soft.pth" : ["https://github.com/Kim2091/Kim2091-Models/releases/download/2x-AnimeSharpV2_Set/2x-AnimeSharpV2_RPLKSR_Soft.pth",
|
| 339 |
+
"https://github.com/Kim2091/Kim2091-Models/releases/tag/2x-AnimeSharpV2_Set",
|
| 340 |
+
"""Anime, Compression Removal, Restoration
|
| 341 |
+
Kim2091: This is my first anime model in years. Hopefully you guys can find a good use-case for it.
|
| 342 |
+
RealPLKSR (Higher quality, slower) Soft: For cleaner sources. Soft models preserve depth of field but may not remove other artifacts as well"""],
|
| 343 |
+
|
| 344 |
+
"4xPurePhoto-RealPLSKR.pth" : ["https://github.com/starinspace/StarinspaceUpscale/releases/download/Models/4xPurePhoto-RealPLSKR.pth",
|
| 345 |
+
"https://openmodeldb.info/models/4x-PurePhoto-RealPLSKR",
|
| 346 |
+
"""AI Generated, Compression Removal, JPEG, Realistic, Restoration
|
| 347 |
+
asterixcool: Skilled in working with cats, hair, parties, and creating clear images.
|
| 348 |
+
Also proficient in resizing photos and enlarging large, sharp images.
|
| 349 |
+
Can effectively improve images from small sizes as well (300px at smallest on one side, depending on the subject).
|
| 350 |
+
Experienced in experimenting with techniques like upscaling with this model twice and
|
| 351 |
+
then reducing it by 50% to enhance details, especially in features like hair or animals."""],
|
| 352 |
+
|
| 353 |
+
"2x_Text2HD_v.1-RealPLKSR.pth" : ["https://github.com/starinspace/StarinspaceUpscale/releases/download/Models/2x_Text2HD_v.1-RealPLKSR.pth",
|
| 354 |
+
"https://openmodeldb.info/models/2x-Text2HD-v-1",
|
| 355 |
+
"""Compression Removal, Denoise, General Upscaler, JPEG, Restoration, Text
|
| 356 |
+
asterixcool: The upscale model is specifically designed to enhance lower-quality text images,
|
| 357 |
+
improving their clarity and readability by upscaling them by 2x.
|
| 358 |
+
It excels at processing moderately sized text, effectively transforming it into high-quality, legible scans.
|
| 359 |
+
However, the model may encounter challenges when dealing with very small text,
|
| 360 |
+
as its performance is optimized for text of a certain minimum size. For best results,
|
| 361 |
+
input images should contain text that is not excessively small."""],
|
| 362 |
+
|
| 363 |
+
"2xVHS2HD-RealPLKSR.pth" : ["https://github.com/starinspace/StarinspaceUpscale/releases/download/Models/2xVHS2HD-RealPLKSR.pth",
|
| 364 |
+
"https://openmodeldb.info/models/2x-VHS2HD",
|
| 365 |
+
"""Compression Removal, Dehalo, Realistic, Restoration, Video Frame
|
| 366 |
+
asterixcool: An advanced VHS recording model designed to enhance video quality by reducing artifacts such as haloing, ghosting, and noise patterns.
|
| 367 |
+
Optimized primarily for PAL resolution (NTSC might work good as well)."""],
|
| 368 |
+
|
| 369 |
+
"4xNomosWebPhoto_RealPLKSR.pth" : ["https://github.com/Phhofm/models/releases/download/4xNomosWebPhoto_RealPLKSR/4xNomosWebPhoto_RealPLKSR.pth",
|
| 370 |
+
"https://openmodeldb.info/models/4x-NomosWebPhoto-RealPLKSR",
|
| 371 |
+
"""Realistic, Restoration
|
| 372 |
+
Phhofm: 4x RealPLKSR model for photography, trained with realistic noise, lens blur, jpg and webp re-compression."""],
|
| 373 |
+
|
| 374 |
+
# DRCT
|
| 375 |
+
"4xNomos2_hq_drct-l.pth" : ["https://github.com/Phhofm/models/releases/download/4xNomos2_hq_drct-l/4xNomos2_hq_drct-l.pth",
|
| 376 |
+
"https://github.com/Phhofm/models/releases/tag/4xNomos2_hq_drct-l",
|
| 377 |
+
"""General Upscaler, Realistic
|
| 378 |
+
Phhofm: An drct-l 4x upscaling model, similiar to the 4xNomos2_hq_atd, 4xNomos2_hq_dat2 and 4xNomos2_hq_mosr models, trained and for usage on non-degraded input to give good quality output.
|
| 379 |
+
"""],
|
| 380 |
+
|
| 381 |
+
# ATD
|
| 382 |
+
"4xNomos2_hq_atd.pth" : ["https://github.com/Phhofm/models/releases/download/4xNomos2_hq_atd/4xNomos2_hq_atd.pth",
|
| 383 |
+
"https://github.com/Phhofm/models/releases/tag/4xNomos2_hq_atd",
|
| 384 |
+
"""General Upscaler, Realistic
|
| 385 |
+
Phhofm: An atd 4x upscaling model, similiar to the 4xNomos2_hq_dat2 or 4xNomos2_hq_mosr models, trained and for usage on non-degraded input to give good quality output.
|
| 386 |
+
"""],
|
| 387 |
+
|
| 388 |
+
# MoSR
|
| 389 |
+
"4xNomos2_hq_mosr.pth" : ["https://github.com/Phhofm/models/releases/download/4xNomos2_hq_mosr/4xNomos2_hq_mosr.pth",
|
| 390 |
+
"https://github.com/Phhofm/models/releases/tag/4xNomos2_hq_mosr",
|
| 391 |
+
"""General Upscaler, Realistic
|
| 392 |
+
Phhofm: A 4x MoSR upscaling model, meant for non-degraded input, since this model was trained on non-degraded input to give good quality output.
|
| 393 |
+
"""],
|
| 394 |
+
|
| 395 |
+
"2x-AnimeSharpV2_MoSR_Sharp.pth" : ["https://github.com/Kim2091/Kim2091-Models/releases/download/2x-AnimeSharpV2_Set/2x-AnimeSharpV2_MoSR_Sharp.pth",
|
| 396 |
+
"https://github.com/Kim2091/Kim2091-Models/releases/tag/2x-AnimeSharpV2_Set",
|
| 397 |
+
"""Anime, Compression Removal, Restoration
|
| 398 |
+
Kim2091: This is my first anime model in years. Hopefully you guys can find a good use-case for it.
|
| 399 |
+
MoSR (Lower quality, faster), Sharp: For heavily degraded sources. Sharp models have issues depth of field but are best at removing artifacts
|
| 400 |
+
"""],
|
| 401 |
+
|
| 402 |
+
"2x-AnimeSharpV2_MoSR_Soft.pth" : ["https://github.com/Kim2091/Kim2091-Models/releases/download/2x-AnimeSharpV2_Set/2x-AnimeSharpV2_MoSR_Soft.pth",
|
| 403 |
+
"https://github.com/Kim2091/Kim2091-Models/releases/tag/2x-AnimeSharpV2_Set",
|
| 404 |
+
"""Anime, Compression Removal, Restoration
|
| 405 |
+
Kim2091: This is my first anime model in years. Hopefully you guys can find a good use-case for it.
|
| 406 |
+
MoSR (Lower quality, faster), Soft: For cleaner sources. Soft models preserve depth of field but may not remove other artifacts as well
|
| 407 |
+
"""],
|
| 408 |
+
|
| 409 |
+
# SRFormer
|
| 410 |
+
"4xNomos8kSCSRFormer.pth" : ["https://github.com/Phhofm/models/releases/download/4xNomos8kSCSRFormer/4xNomos8kSCSRFormer.pth",
|
| 411 |
+
"https://github.com/Phhofm/models/releases/tag/4xNomos8kSCSRFormer",
|
| 412 |
+
"""Anime, Compression Removal, General Upscaler, JPEG, Realistic, Restoration
|
| 413 |
+
Phhofm: 4x photo upscaler with otf jpg compression and blur, trained on musl's Nomos8k_sfw dataset for realisic sr.
|
| 414 |
+
"""],
|
| 415 |
+
|
| 416 |
+
"4xFrankendataFullDegradation_SRFormer460K_g.pth" : ["https://drive.google.com/uc?export=download&confirm=1&id=1PZrj-8ofxhORv_OgTVSoRt3dYi-BtiDj",
|
| 417 |
+
"https://openmodeldb.info/models/4x-Frankendata-FullDegradation-SRFormer",
|
| 418 |
+
"""Compression Removal, Denoise, Realistic, Restoration
|
| 419 |
+
Crustaceous D: 4x realistic upscaler that may also work for general purpose usage.
|
| 420 |
+
It was trained with OTF random degradation with a very low to very high range of degradations, including blur, noise, and compression.
|
| 421 |
+
Trained with the same Frankendata dataset that I used for the pretrain model.
|
| 422 |
+
"""],
|
| 423 |
+
|
| 424 |
+
"4xFrankendataPretrainer_SRFormer400K_g.pth" : ["https://drive.google.com/uc?export=download&confirm=1&id=1SaKvpYYIm2Vj2m9GifUMlNCbmkE6JZmr",
|
| 425 |
+
"https://openmodeldb.info/models/4x-FrankendataPretainer-SRFormer",
|
| 426 |
+
"""Realistic, Restoration
|
| 427 |
+
Crustaceous D: 4x realistic upscaler that may also work for general purpose usage.
|
| 428 |
+
It was trained with OTF random degradation with a very low to very high range of degradations, including blur, noise, and compression.
|
| 429 |
+
Trained with the same Frankendata dataset that I used for the pretrain model.
|
| 430 |
+
"""],
|
| 431 |
+
|
| 432 |
+
"1xFrankenfixer_SRFormerLight_g.pth" : ["https://drive.google.com/uc?export=download&confirm=1&id=1UJ0iyFn4IGNhPIgNgrQrBxYsdDloFc9I",
|
| 433 |
+
"https://openmodeldb.info/models/1x-Frankenfixer-SRFormerLight",
|
| 434 |
+
"""Realistic, Restoration
|
| 435 |
+
Crustaceous D: A 1x model designed to reduce artifacts and restore detail to images upscaled by 4xFrankendata_FullDegradation_SRFormer. It could possibly work with other upscaling models too.
|
| 436 |
+
"""],
|
| 437 |
+
}
|
| 438 |
+
|
| 439 |
+
example_list = ["images/a01.jpg", "images/a02.jpg", "images/a03.jpg", "images/a04.jpg", "images/bus.jpg", "images/zidane.jpg",
|
| 440 |
+
"images/b01.jpg", "images/b02.jpg", "images/b03.jpg", "images/b04.jpg", "images/b05.jpg", "images/b06.jpg",
|
| 441 |
+
"images/b07.jpg", "images/b08.jpg", "images/b09.jpg", "images/b10.jpg", "images/b11.jpg", "images/c01.jpg",
|
| 442 |
+
"images/c02.jpg", "images/c03.jpg", "images/c04.jpg", "images/c05.jpg", "images/c06.jpg", "images/c07.jpg",
|
| 443 |
+
"images/c08.jpg", "images/c09.jpg", "images/c10.jpg"]
|
| 444 |
+
|
| 445 |
+
def get_model_type(model_name):
|
| 446 |
+
# Define model type mappings based on key parts of the model names
|
| 447 |
+
model_type = "other"
|
| 448 |
+
if any(value in model_name.lower() for value in ("4x-animesharp.pth", "sudo-realesrgan", "remacri")):
|
| 449 |
+
model_type = "ESRGAN"
|
| 450 |
+
elif "srformer" in model_name.lower():
|
| 451 |
+
model_type = "SRFormer"
|
| 452 |
+
elif ("realplksr" in model_name.lower() and "dysample" in model_name.lower()) or "rplksrd" in model_name.lower():
|
| 453 |
+
model_type = "RealPLKSR_dysample"
|
| 454 |
+
elif any(value in model_name.lower() for value in ("realplksr", "rplksr", "realplskr")):
|
| 455 |
+
model_type = "RealPLKSR"
|
| 456 |
+
elif any(value in model_name.lower() for value in ("realesrgan", "realesrnet")):
|
| 457 |
+
model_type = "RRDB"
|
| 458 |
+
elif any(value in model_name.lower() for value in ("realesr", "compact")):
|
| 459 |
+
model_type = "SRVGG"
|
| 460 |
+
elif "esrgan" in model_name.lower():
|
| 461 |
+
model_type = "ESRGAN"
|
| 462 |
+
elif "dat" in model_name.lower():
|
| 463 |
+
model_type = "DAT"
|
| 464 |
+
elif "hat" in model_name.lower():
|
| 465 |
+
model_type = "HAT"
|
| 466 |
+
elif "drct" in model_name.lower():
|
| 467 |
+
model_type = "DRCT"
|
| 468 |
+
elif "atd" in model_name.lower():
|
| 469 |
+
model_type = "ATD"
|
| 470 |
+
elif "mosr" in model_name.lower():
|
| 471 |
+
model_type = "MoSR"
|
| 472 |
+
return f"{model_type}, {model_name}"
|
| 473 |
+
|
| 474 |
+
typed_upscale_models = {get_model_type(key): value[0] for key, value in upscale_models.items()}
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
class Upscale:
|
| 478 |
+
def __init__(self,):
|
| 479 |
+
self.scale = 4
|
| 480 |
+
self.modelInUse = ""
|
| 481 |
+
self.realesrganer = None
|
| 482 |
+
self.face_enhancer = None
|
| 483 |
+
|
| 484 |
+
def initBGUpscaleModel(self, upscale_model):
|
| 485 |
+
upscale_type, upscale_model = upscale_model.split(", ", 1)
|
| 486 |
+
download_from_url(upscale_models[upscale_model][0], upscale_model, os.path.join("weights", "upscale"))
|
| 487 |
+
self.modelInUse = f"_{os.path.splitext(upscale_model)[0]}"
|
| 488 |
+
netscale = 1 if any(sub in upscale_model.lower() for sub in ("x1", "1x")) else (2 if any(sub in upscale_model.lower() for sub in ("x2", "2x")) else 4)
|
| 489 |
+
model = None
|
| 490 |
+
half = True if torch.cuda.is_available() else False
|
| 491 |
+
if upscale_type:
|
| 492 |
+
# The values of the following hyperparameters are based on the research findings of the Spandrel project.
|
| 493 |
+
# https://github.com/chaiNNer-org/spandrel/tree/main/libs/spandrel/spandrel/architectures
|
| 494 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
| 495 |
+
loadnet = torch.load(os.path.join("weights", "upscale", upscale_model), map_location=torch.device('cpu'), weights_only=True)
|
| 496 |
+
if 'params_ema' in loadnet or 'params' in loadnet:
|
| 497 |
+
loadnet = loadnet['params_ema'] if 'params_ema' in loadnet else loadnet['params']
|
| 498 |
+
|
| 499 |
+
if upscale_type == "SRVGG":
|
| 500 |
+
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
| 501 |
+
body_max_num = self.find_max_numbers(loadnet, "body")
|
| 502 |
+
num_feat = loadnet["body.0.weight"].shape[0]
|
| 503 |
+
num_in_ch = loadnet["body.0.weight"].shape[1]
|
| 504 |
+
num_conv = body_max_num // 2 - 1
|
| 505 |
+
model = SRVGGNetCompact(num_in_ch=num_in_ch, num_out_ch=3, num_feat=num_feat, num_conv=num_conv, upscale=netscale, act_type='prelu')
|
| 506 |
+
elif upscale_type == "RRDB" or upscale_type == "ESRGAN":
|
| 507 |
+
if upscale_type == "RRDB":
|
| 508 |
+
num_block = self.find_max_numbers(loadnet, "body") + 1
|
| 509 |
+
num_feat = loadnet["conv_first.weight"].shape[0]
|
| 510 |
+
else:
|
| 511 |
+
num_block = self.find_max_numbers(loadnet, "model.1.sub")
|
| 512 |
+
num_feat = loadnet["model.0.weight"].shape[0]
|
| 513 |
+
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=num_feat, num_block=num_block, num_grow_ch=32, scale=netscale, is_real_esrgan=upscale_type == "RRDB")
|
| 514 |
+
elif upscale_type == "DAT":
|
| 515 |
+
from basicsr.archs.dat_arch import DAT
|
| 516 |
+
half = False
|
| 517 |
+
|
| 518 |
+
in_chans = loadnet["conv_first.weight"].shape[1]
|
| 519 |
+
embed_dim = loadnet["conv_first.weight"].shape[0]
|
| 520 |
+
num_layers = self.find_max_numbers(loadnet, "layers") + 1
|
| 521 |
+
depth = [6] * num_layers
|
| 522 |
+
num_heads = [6] * num_layers
|
| 523 |
+
for i in range(num_layers):
|
| 524 |
+
depth[i] = self.find_max_numbers(loadnet, f"layers.{i}.blocks") + 1
|
| 525 |
+
num_heads[i] = loadnet[f"layers.{i}.blocks.1.attn.temperature"].shape[0] if depth[i] >= 2 else \
|
| 526 |
+
loadnet[f"layers.{i}.blocks.0.attn.attns.0.pos.pos3.2.weight"].shape[0] * 2
|
| 527 |
+
|
| 528 |
+
upsampler = "pixelshuffle" if "conv_last.weight" in loadnet else "pixelshuffledirect"
|
| 529 |
+
resi_connection = "1conv" if "conv_after_body.weight" in loadnet else "3conv"
|
| 530 |
+
qkv_bias = "layers.0.blocks.0.attn.qkv.bias" in loadnet
|
| 531 |
+
expansion_factor = float(loadnet["layers.0.blocks.0.ffn.fc1.weight"].shape[0] / embed_dim)
|
| 532 |
+
|
| 533 |
+
img_size = 64
|
| 534 |
+
if "layers.0.blocks.2.attn.attn_mask_0" in loadnet:
|
| 535 |
+
attn_mask_0_x, attn_mask_0_y, _attn_mask_0_z = loadnet["layers.0.blocks.2.attn.attn_mask_0"].shape
|
| 536 |
+
img_size = int(math.sqrt(attn_mask_0_x * attn_mask_0_y))
|
| 537 |
+
|
| 538 |
+
split_size = [2, 4]
|
| 539 |
+
if "layers.0.blocks.0.attn.attns.0.rpe_biases" in loadnet:
|
| 540 |
+
split_sizes = loadnet["layers.0.blocks.0.attn.attns.0.rpe_biases"][-1] + 1
|
| 541 |
+
split_size = [int(x) for x in split_sizes]
|
| 542 |
+
|
| 543 |
+
model = DAT(img_size=img_size, in_chans=in_chans, embed_dim=embed_dim, split_size=split_size, depth=depth, num_heads=num_heads, expansion_factor=expansion_factor,
|
| 544 |
+
qkv_bias=qkv_bias, resi_connection=resi_connection, upsampler=upsampler, upscale=netscale)
|
| 545 |
+
elif upscale_type == "HAT":
|
| 546 |
+
half = False
|
| 547 |
+
from basicsr.archs.hat_arch import HAT
|
| 548 |
+
in_chans = loadnet["conv_first.weight"].shape[1]
|
| 549 |
+
embed_dim = loadnet["conv_first.weight"].shape[0]
|
| 550 |
+
window_size = int(math.sqrt(loadnet["relative_position_index_SA"].shape[0]))
|
| 551 |
+
num_layers = self.find_max_numbers(loadnet, "layers") + 1
|
| 552 |
+
depths = [6] * num_layers
|
| 553 |
+
num_heads = [6] * num_layers
|
| 554 |
+
for i in range(num_layers):
|
| 555 |
+
depths[i] = self.find_max_numbers(loadnet, f"layers.{i}.residual_group.blocks") + 1
|
| 556 |
+
num_heads[i] = loadnet[f"layers.{i}.residual_group.overlap_attn.relative_position_bias_table"].shape[1]
|
| 557 |
+
resi_connection = "1conv" if "conv_after_body.weight" in loadnet else "identity"
|
| 558 |
+
|
| 559 |
+
compress_ratio = self.find_divisor_for_quotient(embed_dim, loadnet["layers.0.residual_group.blocks.0.conv_block.cab.0.weight"].shape[0],)
|
| 560 |
+
squeeze_factor = self.find_divisor_for_quotient(embed_dim, loadnet["layers.0.residual_group.blocks.0.conv_block.cab.3.attention.1.weight"].shape[0],)
|
| 561 |
+
|
| 562 |
+
qkv_bias = "layers.0.residual_group.blocks.0.attn.qkv.bias" in loadnet
|
| 563 |
+
patch_norm = "patch_embed.norm.weight" in loadnet
|
| 564 |
+
ape = "absolute_pos_embed" in loadnet
|
| 565 |
+
|
| 566 |
+
mlp_hidden_dim = int(loadnet["layers.0.residual_group.blocks.0.mlp.fc1.weight"].shape[0])
|
| 567 |
+
mlp_ratio = mlp_hidden_dim / embed_dim
|
| 568 |
+
upsampler = "pixelshuffle"
|
| 569 |
+
|
| 570 |
+
model = HAT(img_size=64, patch_size=1, in_chans=in_chans, embed_dim=embed_dim, depths=depths, num_heads=num_heads, window_size=window_size, compress_ratio=compress_ratio,
|
| 571 |
+
squeeze_factor=squeeze_factor, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, ape=ape, patch_norm=patch_norm,
|
| 572 |
+
upsampler=upsampler, resi_connection=resi_connection, upscale=netscale,)
|
| 573 |
+
elif "RealPLKSR" in upscale_type:
|
| 574 |
+
from basicsr.archs.realplksr_arch import realplksr
|
| 575 |
+
half = False if "RealPLSKR" in upscale_model else half
|
| 576 |
+
use_ea = "feats.1.attn.f.0.weight" in loadnet
|
| 577 |
+
dim = loadnet["feats.0.weight"].shape[0]
|
| 578 |
+
num_feats = self.find_max_numbers(loadnet, "feats") + 1
|
| 579 |
+
n_blocks = num_feats - 3
|
| 580 |
+
kernel_size = loadnet["feats.1.lk.conv.weight"].shape[2]
|
| 581 |
+
split_ratio = loadnet["feats.1.lk.conv.weight"].shape[0] / dim
|
| 582 |
+
use_dysample = "to_img.init_pos" in loadnet
|
| 583 |
+
|
| 584 |
+
model = realplksr(upscaling_factor=netscale, dim=dim, n_blocks=n_blocks, kernel_size=kernel_size, split_ratio=split_ratio, use_ea=use_ea, dysample=use_dysample)
|
| 585 |
+
elif upscale_type == "DRCT":
|
| 586 |
+
half = False
|
| 587 |
+
from basicsr.archs.DRCT_arch import DRCT
|
| 588 |
+
|
| 589 |
+
in_chans = loadnet["conv_first.weight"].shape[1]
|
| 590 |
+
embed_dim = loadnet["conv_first.weight"].shape[0]
|
| 591 |
+
num_layers = self.find_max_numbers(loadnet, "layers") + 1
|
| 592 |
+
depths = (6,) * num_layers
|
| 593 |
+
num_heads = []
|
| 594 |
+
for i in range(num_layers):
|
| 595 |
+
num_heads.append(loadnet[f"layers.{i}.swin1.attn.relative_position_bias_table"].shape[1])
|
| 596 |
+
|
| 597 |
+
mlp_ratio = loadnet["layers.0.swin1.mlp.fc1.weight"].shape[0] / embed_dim
|
| 598 |
+
window_square = loadnet["layers.0.swin1.attn.relative_position_bias_table"].shape[0]
|
| 599 |
+
window_size = (math.isqrt(window_square) + 1) // 2
|
| 600 |
+
upsampler = "pixelshuffle" if "conv_last.weight" in loadnet else ""
|
| 601 |
+
resi_connection = "1conv" if "conv_after_body.weight" in loadnet else ""
|
| 602 |
+
qkv_bias = "layers.0.swin1.attn.qkv.bias" in loadnet
|
| 603 |
+
gc_adjust1 = loadnet["layers.0.adjust1.weight"].shape[0]
|
| 604 |
+
patch_norm = "patch_embed.norm.weight" in loadnet
|
| 605 |
+
ape = "absolute_pos_embed" in loadnet
|
| 606 |
+
|
| 607 |
+
model = DRCT(in_chans=in_chans, img_size= 64, window_size=window_size, compress_ratio=3,squeeze_factor=30,
|
| 608 |
+
conv_scale= 0.01, overlap_ratio= 0.5, img_range= 1., depths=depths, embed_dim=embed_dim, num_heads=num_heads,
|
| 609 |
+
mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, ape=ape, patch_norm=patch_norm, use_checkpoint=False,
|
| 610 |
+
upscale=netscale, upsampler=upsampler, resi_connection=resi_connection, gc =gc_adjust1,)
|
| 611 |
+
elif upscale_type == "ATD":
|
| 612 |
+
half = False
|
| 613 |
+
from basicsr.archs.atd_arch import ATD
|
| 614 |
+
in_chans = loadnet["conv_first.weight"].shape[1]
|
| 615 |
+
embed_dim = loadnet["conv_first.weight"].shape[0]
|
| 616 |
+
window_size = math.isqrt(loadnet["relative_position_index_SA"].shape[0])
|
| 617 |
+
num_layers = self.find_max_numbers(loadnet, "layers") + 1
|
| 618 |
+
depths = [6] * num_layers
|
| 619 |
+
num_heads = [6] * num_layers
|
| 620 |
+
for i in range(num_layers):
|
| 621 |
+
depths[i] = self.find_max_numbers(loadnet, f"layers.{i}.residual_group.layers") + 1
|
| 622 |
+
num_heads[i] = loadnet[f"layers.{i}.residual_group.layers.0.attn_win.relative_position_bias_table"].shape[1]
|
| 623 |
+
num_tokens = loadnet["layers.0.residual_group.layers.0.attn_atd.scale"].shape[0]
|
| 624 |
+
reducted_dim = loadnet["layers.0.residual_group.layers.0.attn_atd.wq.weight"].shape[0]
|
| 625 |
+
convffn_kernel_size = loadnet["layers.0.residual_group.layers.0.convffn.dwconv.depthwise_conv.0.weight"].shape[2]
|
| 626 |
+
mlp_ratio = (loadnet["layers.0.residual_group.layers.0.convffn.fc1.weight"].shape[0] / embed_dim)
|
| 627 |
+
qkv_bias = "layers.0.residual_group.layers.0.wqkv.bias" in loadnet
|
| 628 |
+
ape = "absolute_pos_embed" in loadnet
|
| 629 |
+
patch_norm = "patch_embed.norm.weight" in loadnet
|
| 630 |
+
resi_connection = "1conv" if "layers.0.conv.weight" in loadnet else "3conv"
|
| 631 |
+
|
| 632 |
+
if "conv_up1.weight" in loadnet:
|
| 633 |
+
upsampler = "nearest+conv"
|
| 634 |
+
elif "conv_before_upsample.0.weight" in loadnet:
|
| 635 |
+
upsampler = "pixelshuffle"
|
| 636 |
+
elif "conv_last.weight" in loadnet:
|
| 637 |
+
upsampler = ""
|
| 638 |
+
else:
|
| 639 |
+
upsampler = "pixelshuffledirect"
|
| 640 |
+
|
| 641 |
+
is_light = upsampler == "pixelshuffledirect" and embed_dim == 48
|
| 642 |
+
category_size = 128 if is_light else 256
|
| 643 |
+
|
| 644 |
+
model = ATD(in_chans=in_chans, embed_dim=embed_dim, depths=depths, num_heads=num_heads, window_size=window_size, category_size=category_size,
|
| 645 |
+
num_tokens=num_tokens, reducted_dim=reducted_dim, convffn_kernel_size=convffn_kernel_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, ape=ape,
|
| 646 |
+
patch_norm=patch_norm, use_checkpoint=False, upscale=netscale, upsampler=upsampler, resi_connection='1conv',)
|
| 647 |
+
elif upscale_type == "MoSR":
|
| 648 |
+
from basicsr.archs.mosr_arch import mosr
|
| 649 |
+
n_block = self.find_max_numbers(loadnet, "gblocks") - 5
|
| 650 |
+
in_ch = loadnet["gblocks.0.weight"].shape[1]
|
| 651 |
+
out_ch = loadnet["upsampler.end_conv.weight"].shape[0] if "upsampler.init_pos" in loadnet else in_ch
|
| 652 |
+
dim = loadnet["gblocks.0.weight"].shape[0]
|
| 653 |
+
expansion_ratio = (loadnet["gblocks.1.fc1.weight"].shape[0] / loadnet["gblocks.1.fc1.weight"].shape[1]) / 2
|
| 654 |
+
conv_ratio = loadnet["gblocks.1.conv.weight"].shape[0] / dim
|
| 655 |
+
kernel_size = loadnet["gblocks.1.conv.weight"].shape[2]
|
| 656 |
+
upsampler = "dys" if "upsampler.init_pos" in loadnet else ("gps" if "upsampler.in_to_k.weight" in loadnet else "ps")
|
| 657 |
+
|
| 658 |
+
model = mosr(in_ch = in_ch, out_ch = out_ch, upscale = netscale, n_block = n_block, dim = dim,
|
| 659 |
+
upsampler = upsampler, kernel_size = kernel_size, expansion_ratio = expansion_ratio, conv_ratio = conv_ratio,)
|
| 660 |
+
elif upscale_type == "SRFormer":
|
| 661 |
+
half = False
|
| 662 |
+
from basicsr.archs.srformer_arch import SRFormer
|
| 663 |
+
in_chans = loadnet["conv_first.weight"].shape[1]
|
| 664 |
+
embed_dim = loadnet["conv_first.weight"].shape[0]
|
| 665 |
+
ape = "absolute_pos_embed" in loadnet
|
| 666 |
+
patch_norm = "patch_embed.norm.weight" in loadnet
|
| 667 |
+
qkv_bias = "layers.0.residual_group.blocks.0.attn.q.bias" in loadnet
|
| 668 |
+
mlp_ratio = float(loadnet["layers.0.residual_group.blocks.0.mlp.fc1.weight"].shape[0] / embed_dim)
|
| 669 |
+
|
| 670 |
+
num_layers = self.find_max_numbers(loadnet, "layers") + 1
|
| 671 |
+
depths = [6] * num_layers
|
| 672 |
+
num_heads = [6] * num_layers
|
| 673 |
+
for i in range(num_layers):
|
| 674 |
+
depths[i] = self.find_max_numbers(loadnet, f"layers.{i}.residual_group.blocks") + 1
|
| 675 |
+
num_heads[i] = loadnet[f"layers.{i}.residual_group.blocks.0.attn.relative_position_bias_table"].shape[1]
|
| 676 |
+
|
| 677 |
+
if "conv_hr.weight" in loadnet:
|
| 678 |
+
upsampler = "nearest+conv"
|
| 679 |
+
elif "conv_before_upsample.0.weight" in loadnet:
|
| 680 |
+
upsampler = "pixelshuffle"
|
| 681 |
+
elif "upsample.0.weight" in loadnet:
|
| 682 |
+
upsampler = "pixelshuffledirect"
|
| 683 |
+
resi_connection = "1conv" if "conv_after_body.weight" in loadnet else "3conv"
|
| 684 |
+
|
| 685 |
+
window_size = int(math.sqrt(loadnet["layers.0.residual_group.blocks.0.attn.relative_position_bias_table"].shape[0])) + 1
|
| 686 |
+
|
| 687 |
+
if "layers.0.residual_group.blocks.1.attn_mask" in loadnet:
|
| 688 |
+
attn_mask_0 = loadnet["layers.0.residual_group.blocks.1.attn_mask"].shape[0]
|
| 689 |
+
patches_resolution = int(math.sqrt(attn_mask_0) * window_size)
|
| 690 |
+
else:
|
| 691 |
+
patches_resolution = window_size
|
| 692 |
+
if ape:
|
| 693 |
+
pos_embed_value = loadnet.get("absolute_pos_embed", [None, None])[1]
|
| 694 |
+
if pos_embed_value:
|
| 695 |
+
patches_resolution = int(math.sqrt(pos_embed_value))
|
| 696 |
+
|
| 697 |
+
img_size = patches_resolution
|
| 698 |
+
if img_size % window_size != 0:
|
| 699 |
+
for nice_number in [512, 256, 128, 96, 64, 48, 32, 24, 16]:
|
| 700 |
+
if nice_number % window_size != 0:
|
| 701 |
+
nice_number += window_size - (nice_number % window_size)
|
| 702 |
+
if nice_number == patches_resolution:
|
| 703 |
+
img_size = nice_number
|
| 704 |
+
break
|
| 705 |
+
|
| 706 |
+
model = SRFormer(img_size=img_size, in_chans=in_chans, embed_dim=embed_dim, depths=depths, num_heads=num_heads, window_size=window_size, mlp_ratio=mlp_ratio,
|
| 707 |
+
qkv_bias=qkv_bias, qk_scale=None, ape=ape, patch_norm=patch_norm, upscale=netscale, upsampler=upsampler, resi_connection=resi_connection,)
|
| 708 |
+
|
| 709 |
+
if model:
|
| 710 |
+
self.realesrganer = RealESRGANer(scale=netscale, model_path=os.path.join("weights", "upscale", upscale_model), model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
| 711 |
+
elif upscale_model:
|
| 712 |
+
import PIL
|
| 713 |
+
from image_gen_aux import UpscaleWithModel
|
| 714 |
+
class UpscaleWithModel_Gfpgan(UpscaleWithModel):
|
| 715 |
+
def cv2pil(self, image):
|
| 716 |
+
''' OpenCV type -> PIL type
|
| 717 |
+
https://qiita.com/derodero24/items/f22c22b22451609908ee
|
| 718 |
+
'''
|
| 719 |
+
new_image = image.copy()
|
| 720 |
+
if new_image.ndim == 2: # Grayscale
|
| 721 |
+
pass
|
| 722 |
+
elif new_image.shape[2] == 3: # Color
|
| 723 |
+
new_image = cv2.cvtColor(new_image, cv2.COLOR_BGR2RGB)
|
| 724 |
+
elif new_image.shape[2] == 4: # Transparency
|
| 725 |
+
new_image = cv2.cvtColor(new_image, cv2.COLOR_BGRA2RGBA)
|
| 726 |
+
new_image = PIL.Image.fromarray(new_image)
|
| 727 |
+
return new_image
|
| 728 |
+
|
| 729 |
+
def pil2cv(self, image):
|
| 730 |
+
''' PIL type -> OpenCV type
|
| 731 |
+
https://qiita.com/derodero24/items/f22c22b22451609908ee
|
| 732 |
+
'''
|
| 733 |
+
new_image = np.array(image, dtype=np.uint8)
|
| 734 |
+
if new_image.ndim == 2: # Grayscale
|
| 735 |
+
pass
|
| 736 |
+
elif new_image.shape[2] == 3: # Color
|
| 737 |
+
new_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
|
| 738 |
+
elif new_image.shape[2] == 4: # Transparency
|
| 739 |
+
new_image = cv2.cvtColor(new_image, cv2.COLOR_RGBA2BGRA)
|
| 740 |
+
return new_image
|
| 741 |
+
|
| 742 |
+
def enhance(self, img, outscale=None):
|
| 743 |
+
# img: numpy array
|
| 744 |
+
h_input, w_input = img.shape[0:2]
|
| 745 |
+
pil_img = self.cv2pil(img)
|
| 746 |
+
pil_img = self.__call__(pil_img)
|
| 747 |
+
cv_image = self.pil2cv(pil_img)
|
| 748 |
+
if outscale is not None and outscale != float(netscale):
|
| 749 |
+
interpolation = cv2.INTER_AREA if outscale < float(netscale) else cv2.INTER_LANCZOS4
|
| 750 |
+
cv_image = cv2.resize(
|
| 751 |
+
cv_image, (
|
| 752 |
+
int(w_input * outscale),
|
| 753 |
+
int(h_input * outscale),
|
| 754 |
+
), interpolation=interpolation)
|
| 755 |
+
return cv_image, None
|
| 756 |
+
|
| 757 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 758 |
+
upscaler = UpscaleWithModel.from_pretrained(os.path.join("weights", "upscale", upscale_model)).to(device)
|
| 759 |
+
upscaler.__class__ = UpscaleWithModel_Gfpgan
|
| 760 |
+
self.realesrganer = upscaler
|
| 761 |
+
|
| 762 |
+
|
| 763 |
+
def initFaceEnhancerModel(self, face_restoration, face_detection):
|
| 764 |
+
model_rootpath = os.path.join("weights", "face")
|
| 765 |
+
model_path = os.path.join(model_rootpath, face_restoration)
|
| 766 |
+
download_from_url(face_models[face_restoration][0], face_restoration, model_rootpath)
|
| 767 |
+
|
| 768 |
+
self.modelInUse = f"_{os.path.splitext(face_restoration)[0]}" + self.modelInUse
|
| 769 |
+
from gfpgan.utils import GFPGANer
|
| 770 |
+
resolution = 512
|
| 771 |
+
channel_multiplier = None
|
| 772 |
+
|
| 773 |
+
if face_restoration and face_restoration.startswith("GFPGANv1."):
|
| 774 |
+
arch = "clean"
|
| 775 |
+
channel_multiplier = 2
|
| 776 |
+
elif face_restoration and face_restoration.startswith("RestoreFormer"):
|
| 777 |
+
arch = "RestoreFormer++" if face_restoration.startswith("RestoreFormer++") else "RestoreFormer"
|
| 778 |
+
elif face_restoration == 'CodeFormer.pth':
|
| 779 |
+
arch = "CodeFormer"
|
| 780 |
+
elif face_restoration.startswith("GPEN-BFR-"):
|
| 781 |
+
arch = "GPEN"
|
| 782 |
+
channel_multiplier = 2
|
| 783 |
+
if "1024" in face_restoration:
|
| 784 |
+
arch = "GPEN-1024"
|
| 785 |
+
resolution = 1024
|
| 786 |
+
elif "2048" in face_restoration:
|
| 787 |
+
arch = "GPEN-2048"
|
| 788 |
+
resolution = 2048
|
| 789 |
+
|
| 790 |
+
self.face_enhancer = GFPGANer(model_path=model_path, upscale=self.scale, arch=arch, channel_multiplier=channel_multiplier, model_rootpath=model_rootpath, det_model=face_detection, resolution=resolution)
|
| 791 |
+
|
| 792 |
+
|
| 793 |
+
def inference(self, gallery, face_restoration, upscale_model, scale: float, face_detection, face_detection_threshold: any, face_detection_only_center: bool, outputWithModelName: bool, save_as_png: bool, progress=gr.Progress()):
|
| 794 |
+
try:
|
| 795 |
+
if not gallery or (not face_restoration and not upscale_model):
|
| 796 |
+
raise ValueError("Invalid parameter setting")
|
| 797 |
+
|
| 798 |
+
gallery_len = len(gallery)
|
| 799 |
+
print(face_restoration, upscale_model, scale, f"gallery length: {gallery_len}")
|
| 800 |
+
|
| 801 |
+
timer = Timer() # Create a timer
|
| 802 |
+
self.scale = scale
|
| 803 |
+
|
| 804 |
+
progressTotal = gallery_len + 1
|
| 805 |
+
progressRatio = 0.5 if upscale_model and face_restoration else 1
|
| 806 |
+
print(f"progressRatio: {progressRatio}")
|
| 807 |
+
current_progress = 0
|
| 808 |
+
progress(0, desc="Initializing models...")
|
| 809 |
+
if upscale_model:
|
| 810 |
+
self.initBGUpscaleModel(upscale_model)
|
| 811 |
+
current_progress += progressRatio/progressTotal;
|
| 812 |
+
progress(current_progress, desc="BG upscale model initialized.")
|
| 813 |
+
timer.checkpoint(f"Initialize BG upscale model")
|
| 814 |
+
|
| 815 |
+
if face_restoration:
|
| 816 |
+
self.initFaceEnhancerModel(face_restoration, face_detection)
|
| 817 |
+
current_progress += progressRatio/progressTotal;
|
| 818 |
+
progress(current_progress, desc="Face enhancer model initialized.")
|
| 819 |
+
timer.checkpoint(f"Initialize face enhancer model")
|
| 820 |
+
|
| 821 |
+
timer.report()
|
| 822 |
+
|
| 823 |
+
if not outputWithModelName:
|
| 824 |
+
self.modelInUse = ""
|
| 825 |
+
|
| 826 |
+
files = []
|
| 827 |
+
# Create zip files for each output type
|
| 828 |
+
unique_id = str(int(time.time())) # Use timestamp for uniqueness
|
| 829 |
+
zip_cropf_path = f"output/{unique_id}_cropped_faces{self.modelInUse}.zip"
|
| 830 |
+
zipf_cropf = zipfile.ZipFile(zip_cropf_path, 'w', zipfile.ZIP_DEFLATED)
|
| 831 |
+
zip_restoref_path = f"output/{unique_id}_restored_faces{self.modelInUse}.zip"
|
| 832 |
+
zipf_restoref = zipfile.ZipFile(zip_restoref_path, 'w', zipfile.ZIP_DEFLATED)
|
| 833 |
+
zip_cmp_path = f"output/{unique_id}_cmp{self.modelInUse}.zip"
|
| 834 |
+
zipf_cmp = zipfile.ZipFile(zip_cmp_path, 'w', zipfile.ZIP_DEFLATED)
|
| 835 |
+
zip_restore_path = f"output/{unique_id}_restored_images{self.modelInUse}.zip"
|
| 836 |
+
zipf_restore = zipfile.ZipFile(zip_restore_path, 'w', zipfile.ZIP_DEFLATED)
|
| 837 |
+
|
| 838 |
+
is_auto_split_upscale = True
|
| 839 |
+
# Dictionary to track counters for each filename
|
| 840 |
+
name_counters = defaultdict(int)
|
| 841 |
+
for gallery_idx, value in enumerate(gallery):
|
| 842 |
+
img_path = None
|
| 843 |
+
try:
|
| 844 |
+
if value is None or not value:
|
| 845 |
+
print(f"Warning: Invalid gallery item at index {gallery_idx}. Skipping.")
|
| 846 |
+
continue
|
| 847 |
+
img_path = str(value[0]) # value is often a list/tuple like [filepath, caption]
|
| 848 |
+
img_name = os.path.basename(img_path)
|
| 849 |
+
basename, extension = os.path.splitext(img_name)
|
| 850 |
+
# Increment the counter for the current name if it appears multiple times
|
| 851 |
+
name_counters[img_name] += 1
|
| 852 |
+
if name_counters[img_name] > 1:
|
| 853 |
+
basename = f"{basename}_{name_counters[img_name] - 1:02d}"
|
| 854 |
+
|
| 855 |
+
img_cv2 = cv2.imdecode(np.fromfile(img_path, np.uint8), cv2.IMREAD_UNCHANGED) # numpy.ndarray
|
| 856 |
+
|
| 857 |
+
if img_cv2 is None:
|
| 858 |
+
print(f"Warning: Could not read or decode image '{img_path}'. Skipping this image.")
|
| 859 |
+
# Skip this iteration and process the next image
|
| 860 |
+
continue
|
| 861 |
+
|
| 862 |
+
img_mode = "RGBA" if len(img_cv2.shape) == 3 and img_cv2.shape[2] == 4 else None
|
| 863 |
+
if len(img_cv2.shape) == 2: # for gray inputs
|
| 864 |
+
img_cv2 = cv2.cvtColor(img_cv2, cv2.COLOR_GRAY2BGR)
|
| 865 |
+
print(f"> Processing image {gallery_idx:02d}, Shape: {img_cv2.shape}")
|
| 866 |
+
|
| 867 |
+
bg_upsample_img = None
|
| 868 |
+
if upscale_model and self.realesrganer and hasattr(self.realesrganer, "enhance"):
|
| 869 |
+
bg_upsample_img, _ = auto_split_upscale(img_cv2, self.realesrganer.enhance, self.scale) if is_auto_split_upscale else self.realesrganer.enhance(img_cv2, outscale=self.scale)
|
| 870 |
+
current_progress += progressRatio/progressTotal;
|
| 871 |
+
progress(current_progress, desc=f"Image {gallery_idx:02d}: Background upscaling...")
|
| 872 |
+
timer.checkpoint(f"Image {gallery_idx:02d}: Background upscale section")
|
| 873 |
+
|
| 874 |
+
if face_restoration and self.face_enhancer:
|
| 875 |
+
cropped_faces, restored_aligned, bg_upsample_img = self.face_enhancer.enhance(img_cv2, has_aligned=False, only_center_face=face_detection_only_center, paste_back=True, bg_upsample_img=bg_upsample_img, eye_dist_threshold=face_detection_threshold)
|
| 876 |
+
# save faces
|
| 877 |
+
if cropped_faces and restored_aligned:
|
| 878 |
+
for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_aligned)):
|
| 879 |
+
# save cropped face
|
| 880 |
+
save_crop_path = f"output/{basename}_{idx:02d}_cropped_faces{self.modelInUse}.png"
|
| 881 |
+
self.imwriteUTF8(save_crop_path, cropped_face)
|
| 882 |
+
zipf_cropf.write(save_crop_path, arcname=os.path.basename(save_crop_path))
|
| 883 |
+
# save restored face
|
| 884 |
+
save_restore_path = f"output/{basename}_{idx:02d}_restored_faces{self.modelInUse}.png"
|
| 885 |
+
self.imwriteUTF8(save_restore_path, restored_face)
|
| 886 |
+
zipf_restoref.write(save_restore_path, arcname=os.path.basename(save_restore_path))
|
| 887 |
+
# save comparison image
|
| 888 |
+
save_cmp_path = f"output/{basename}_{idx:02d}_cmp{self.modelInUse}.png"
|
| 889 |
+
cmp_img = np.concatenate((cropped_face, restored_face), axis=1)
|
| 890 |
+
self.imwriteUTF8(save_cmp_path, cmp_img)
|
| 891 |
+
zipf_cmp.write(save_cmp_path, arcname=os.path.basename(save_cmp_path))
|
| 892 |
+
|
| 893 |
+
files.append(save_crop_path)
|
| 894 |
+
files.append(save_restore_path)
|
| 895 |
+
files.append(save_cmp_path)
|
| 896 |
+
current_progress += progressRatio/progressTotal;
|
| 897 |
+
progress(current_progress, desc=f"Image {gallery_idx:02d}: Face enhancement...")
|
| 898 |
+
timer.checkpoint(f"Image {gallery_idx:02d}: Face enhancer section")
|
| 899 |
+
|
| 900 |
+
restored_img = bg_upsample_img
|
| 901 |
+
timer.report() # Report time for this image
|
| 902 |
+
|
| 903 |
+
# Handle cases where image processing might still result in None
|
| 904 |
+
if restored_img is None:
|
| 905 |
+
print(f"Warning: Processing resulted in no image for '{img_path}'. Skipping output.")
|
| 906 |
+
continue
|
| 907 |
+
|
| 908 |
+
# Determine the file extension for the output image based on user preference and image properties.
|
| 909 |
+
if save_as_png:
|
| 910 |
+
# Force PNG output for the best quality, as requested by the user.
|
| 911 |
+
final_extension = ".png"
|
| 912 |
+
else:
|
| 913 |
+
# Use original logic: PNG for images with an alpha channel (RGBA), otherwise use the original extension or default to jpg.
|
| 914 |
+
final_extension = ".png" if img_mode == "RGBA" else (extension if extension else ".jpg")
|
| 915 |
+
save_path = f"output/{basename}{self.modelInUse}{final_extension}"
|
| 916 |
+
self.imwriteUTF8(save_path, restored_img)
|
| 917 |
+
zipf_restore.write(save_path, arcname=os.path.basename(save_path))
|
| 918 |
+
|
| 919 |
+
restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
|
| 920 |
+
files.append(save_path)
|
| 921 |
+
except RuntimeError as error:
|
| 922 |
+
print(f"Runtime Error while processing image {gallery_idx} ({img_path or 'unknown path'}): {error}")
|
| 923 |
+
print(traceback.format_exc())
|
| 924 |
+
except Exception as general_error:
|
| 925 |
+
print(f"An unexpected error occurred while processing image {gallery_idx} ({img_path or 'unknown path'}): {general_error}")
|
| 926 |
+
print(traceback.format_exc())
|
| 927 |
+
# Can still choose to continue to process the next image
|
| 928 |
+
continue
|
| 929 |
+
|
| 930 |
+
progress(1, desc=f"Processing complete.")
|
| 931 |
+
timer.report_all() # Print all recorded times for the whole batch
|
| 932 |
+
# Close zip files
|
| 933 |
+
zipf_cropf.close()
|
| 934 |
+
zipf_restoref.close()
|
| 935 |
+
zipf_cmp.close()
|
| 936 |
+
zipf_restore.close()
|
| 937 |
+
except Exception as error:
|
| 938 |
+
print(f"Global exception occurred: {error}")
|
| 939 |
+
print(traceback.format_exc())
|
| 940 |
+
return None, None
|
| 941 |
+
finally:
|
| 942 |
+
if hasattr(self, 'face_enhancer') and self.face_enhancer:
|
| 943 |
+
self.face_enhancer._cleanup()
|
| 944 |
+
# Free GPU memory and clean up resources
|
| 945 |
+
if torch.cuda.is_available():
|
| 946 |
+
torch.cuda.empty_cache()
|
| 947 |
+
gc.collect()
|
| 948 |
+
|
| 949 |
+
return files, [zip_cropf_path, zip_restoref_path, zip_cmp_path, zip_restore_path] if face_restoration else [zip_restore_path]
|
| 950 |
+
|
| 951 |
+
|
| 952 |
+
def find_max_numbers(self, state_dict, findkeys):
|
| 953 |
+
if isinstance(findkeys, str):
|
| 954 |
+
findkeys = [findkeys]
|
| 955 |
+
max_values = defaultdict(lambda: None)
|
| 956 |
+
patterns = {findkey: re.compile(rf"^{re.escape(findkey)}\.(\d+)\.") for findkey in findkeys}
|
| 957 |
+
|
| 958 |
+
for key in state_dict:
|
| 959 |
+
for findkey, pattern in patterns.items():
|
| 960 |
+
if match := pattern.match(key):
|
| 961 |
+
num = int(match.group(1))
|
| 962 |
+
max_values[findkey] = max(num, max_values[findkey] if max_values[findkey] is not None else num)
|
| 963 |
+
|
| 964 |
+
return tuple(max_values[findkey] for findkey in findkeys) if len(findkeys) > 1 else max_values[findkeys[0]]
|
| 965 |
+
|
| 966 |
+
def find_divisor_for_quotient(self, a: int, c: int):
|
| 967 |
+
"""
|
| 968 |
+
Returns a number `b` such that `a // b == c`.
|
| 969 |
+
If `b` is an integer, return it as an `int`, otherwise return a `float`.
|
| 970 |
+
"""
|
| 971 |
+
if c == 0:
|
| 972 |
+
raise ValueError("c cannot be zero to avoid division by zero.")
|
| 973 |
+
|
| 974 |
+
b_float = a / c
|
| 975 |
+
|
| 976 |
+
# Check if b is an integer
|
| 977 |
+
if b_float.is_integer():
|
| 978 |
+
return int(b_float)
|
| 979 |
+
|
| 980 |
+
# Try using ceil and floor
|
| 981 |
+
ceil_b = math.ceil(b_float)
|
| 982 |
+
floor_b = math.floor(b_float)
|
| 983 |
+
|
| 984 |
+
if a // ceil_b == c:
|
| 985 |
+
return ceil_b if ceil_b == b_float else float(ceil_b)
|
| 986 |
+
if a // floor_b == c:
|
| 987 |
+
return floor_b if floor_b == b_float else float(floor_b)
|
| 988 |
+
|
| 989 |
+
# account for rounding errors
|
| 990 |
+
if c == a // b_float:
|
| 991 |
+
return b_float
|
| 992 |
+
if c == a // (b_float - 0.01):
|
| 993 |
+
return b_float - 0.01
|
| 994 |
+
if c == a // (b_float + 0.01):
|
| 995 |
+
return b_float + 0.01
|
| 996 |
+
|
| 997 |
+
raise ValueError(f"Could not find a number b such that a // b == c. a={a}, c={c}")
|
| 998 |
+
|
| 999 |
+
def imwriteUTF8(self, save_path, image): # `cv2.imwrite` does not support writing files to UTF-8 file paths.
|
| 1000 |
+
img_name = os.path.basename(save_path)
|
| 1001 |
+
_, extension = os.path.splitext(img_name)
|
| 1002 |
+
is_success, im_buf_arr = cv2.imencode(extension, image)
|
| 1003 |
+
if (is_success): im_buf_arr.tofile(save_path)
|
| 1004 |
+
|
| 1005 |
+
class Timer:
|
| 1006 |
+
def __init__(self):
|
| 1007 |
+
self.start_time = time.perf_counter() # Record the start time
|
| 1008 |
+
self.checkpoints = [("Start", self.start_time)] # Store checkpoints
|
| 1009 |
+
|
| 1010 |
+
def checkpoint(self, label="Checkpoint"):
|
| 1011 |
+
"""Record a checkpoint with a given label."""
|
| 1012 |
+
now = time.perf_counter()
|
| 1013 |
+
self.checkpoints.append((label, now))
|
| 1014 |
+
|
| 1015 |
+
def report(self, is_clear_checkpoints = True):
|
| 1016 |
+
# Determine the max label width for alignment
|
| 1017 |
+
max_label_length = max(len(label) for label, _ in self.checkpoints)
|
| 1018 |
+
|
| 1019 |
+
prev_time = self.checkpoints[0][1]
|
| 1020 |
+
for label, curr_time in self.checkpoints[1:]:
|
| 1021 |
+
elapsed = curr_time - prev_time
|
| 1022 |
+
print(f"{label.ljust(max_label_length)}: {elapsed:.3f} seconds")
|
| 1023 |
+
prev_time = curr_time
|
| 1024 |
+
|
| 1025 |
+
if is_clear_checkpoints:
|
| 1026 |
+
self.checkpoints.clear()
|
| 1027 |
+
self.checkpoint() # Store checkpoints
|
| 1028 |
+
|
| 1029 |
+
def report_all(self):
|
| 1030 |
+
"""Print all recorded checkpoints and total execution time with aligned formatting."""
|
| 1031 |
+
print("\n> Execution Time Report:")
|
| 1032 |
+
|
| 1033 |
+
# Determine the max label width for alignment
|
| 1034 |
+
max_label_length = max(len(label) for label, _ in self.checkpoints) if len(self.checkpoints) > 0 else 0
|
| 1035 |
+
|
| 1036 |
+
prev_time = self.start_time
|
| 1037 |
+
for label, curr_time in self.checkpoints[1:]:
|
| 1038 |
+
elapsed = curr_time - prev_time
|
| 1039 |
+
print(f"{label.ljust(max_label_length)}: {elapsed:.3f} seconds")
|
| 1040 |
+
prev_time = curr_time
|
| 1041 |
+
|
| 1042 |
+
total_time = self.checkpoints[-1][1] - self.start_time
|
| 1043 |
+
print(f"{'Total Execution Time'.ljust(max_label_length)}: {total_time:.3f} seconds\n")
|
| 1044 |
+
|
| 1045 |
+
self.checkpoints.clear()
|
| 1046 |
+
|
| 1047 |
+
def restart(self):
|
| 1048 |
+
self.start_time = time.perf_counter() # Record the start time
|
| 1049 |
+
self.checkpoints = [("Start", self.start_time)] # Store checkpoints
|
| 1050 |
+
|
| 1051 |
+
|
| 1052 |
+
def get_selection_from_gallery(selected_state: gr.SelectData):
|
| 1053 |
+
"""
|
| 1054 |
+
Extracts the selected image path and caption from the gallery selection state.
|
| 1055 |
+
|
| 1056 |
+
Args:
|
| 1057 |
+
selected_state (gr.SelectData): The selection state from a Gradio gallery,
|
| 1058 |
+
containing information about the selected image.
|
| 1059 |
+
|
| 1060 |
+
Returns:
|
| 1061 |
+
tuple: A tuple containing:
|
| 1062 |
+
- str: The file path of the selected image.
|
| 1063 |
+
- str: The caption of the selected image.
|
| 1064 |
+
If `selected_state` is None or invalid, it returns `None`.
|
| 1065 |
+
"""
|
| 1066 |
+
if not selected_state:
|
| 1067 |
+
return selected_state
|
| 1068 |
+
|
| 1069 |
+
return (selected_state.value["image"]["path"], selected_state.value["caption"])
|
| 1070 |
+
|
| 1071 |
+
def limit_gallery(gallery):
|
| 1072 |
+
"""
|
| 1073 |
+
Ensures the gallery does not exceed input_images_limit.
|
| 1074 |
+
|
| 1075 |
+
Args:
|
| 1076 |
+
gallery (list): Current gallery images.
|
| 1077 |
+
|
| 1078 |
+
Returns:
|
| 1079 |
+
list: Trimmed gallery with a maximum of input_images_limit images.
|
| 1080 |
+
"""
|
| 1081 |
+
return gallery[:input_images_limit] if input_images_limit > 0 and gallery else gallery
|
| 1082 |
+
|
| 1083 |
+
def append_gallery(gallery: list, image: str):
|
| 1084 |
+
"""
|
| 1085 |
+
Append a single image to the gallery while respecting input_images_limit.
|
| 1086 |
+
|
| 1087 |
+
Parameters:
|
| 1088 |
+
- gallery (list): Existing list of images. If None, initializes an empty list.
|
| 1089 |
+
- image (str): The image to be added. If None or empty, no action is taken.
|
| 1090 |
+
|
| 1091 |
+
Returns:
|
| 1092 |
+
- list: Updated gallery.
|
| 1093 |
+
"""
|
| 1094 |
+
if gallery is None:
|
| 1095 |
+
gallery = []
|
| 1096 |
+
if not image:
|
| 1097 |
+
return gallery, None
|
| 1098 |
+
|
| 1099 |
+
if input_images_limit == -1 or len(gallery) < input_images_limit:
|
| 1100 |
+
gallery.append(image)
|
| 1101 |
+
|
| 1102 |
+
return gallery, None
|
| 1103 |
+
|
| 1104 |
+
|
| 1105 |
+
def extend_gallery(gallery: list, images):
|
| 1106 |
+
"""
|
| 1107 |
+
Extend the gallery with new images while respecting the input_images_limit.
|
| 1108 |
+
|
| 1109 |
+
Parameters:
|
| 1110 |
+
- gallery (list): Existing list of images. If None, initializes an empty list.
|
| 1111 |
+
- images (list): New images to be added. If None, defaults to an empty list.
|
| 1112 |
+
|
| 1113 |
+
Returns:
|
| 1114 |
+
- list: Updated gallery with the new images added.
|
| 1115 |
+
"""
|
| 1116 |
+
if gallery is None:
|
| 1117 |
+
gallery = []
|
| 1118 |
+
if not images:
|
| 1119 |
+
return gallery
|
| 1120 |
+
|
| 1121 |
+
# Add new images to the gallery
|
| 1122 |
+
gallery.extend(images)
|
| 1123 |
+
|
| 1124 |
+
# Trim gallery to the specified limit, if applicable
|
| 1125 |
+
if input_images_limit > 0:
|
| 1126 |
+
gallery = gallery[:input_images_limit]
|
| 1127 |
+
|
| 1128 |
+
return gallery
|
| 1129 |
+
|
| 1130 |
+
def remove_image_from_gallery(gallery: list, selected_image: str):
|
| 1131 |
+
"""
|
| 1132 |
+
Removes a selected image from the gallery if it exists.
|
| 1133 |
+
|
| 1134 |
+
Args:
|
| 1135 |
+
gallery (list): The current list of images in the gallery.
|
| 1136 |
+
selected_image (str): The image to be removed, represented as a string
|
| 1137 |
+
that needs to be parsed into a tuple.
|
| 1138 |
+
|
| 1139 |
+
Returns:
|
| 1140 |
+
list: The updated gallery after removing the selected image.
|
| 1141 |
+
"""
|
| 1142 |
+
if not gallery or not selected_image:
|
| 1143 |
+
return gallery
|
| 1144 |
+
|
| 1145 |
+
selected_image = ast.literal_eval(selected_image) # Use ast.literal_eval to parse text into a tuple in remove_image_from_gallery.
|
| 1146 |
+
# Remove the selected image from the gallery
|
| 1147 |
+
if selected_image in gallery:
|
| 1148 |
+
gallery.remove(selected_image)
|
| 1149 |
+
return gallery
|
| 1150 |
+
|
| 1151 |
+
def main():
|
| 1152 |
+
if torch.cuda.is_available():
|
| 1153 |
+
# Sets the VRAM limit for the GPU. Fine-tune VRAM usage.
|
| 1154 |
+
# Higher values allow larger image tiles to be processed at once, which is faster. If you see the 'depth' in the console log increase frequently, try raising this value.
|
| 1155 |
+
# Lower it for complex models that need more memory overhead.
|
| 1156 |
+
# This setting is locked in once processing starts. To apply a new value, you must restart the entire application.
|
| 1157 |
+
torch.cuda.set_per_process_memory_fraction(0.900, device='cuda:0')
|
| 1158 |
+
# set torch options to avoid get black image for RTX16xx card
|
| 1159 |
+
# https://github.com/CompVis/stable-diffusion/issues/69#issuecomment-1260722801
|
| 1160 |
+
torch.backends.cudnn.enabled = True
|
| 1161 |
+
torch.backends.cudnn.benchmark = True
|
| 1162 |
+
# Ensure the target directory exists
|
| 1163 |
+
os.makedirs('output', exist_ok=True)
|
| 1164 |
+
|
| 1165 |
+
title = "Image Upscaling & Restoration using GFPGAN / RestoreFormerPlusPlus / CodeFormer / GPEN Algorithm"
|
| 1166 |
+
description = r"""
|
| 1167 |
+
<a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration and Upscalling of the image with a Generative Facial Prior</b></a>. <br>
|
| 1168 |
+
<a href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' target='_blank'><b>RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Pairs</b></a>. <br>
|
| 1169 |
+
<a href='https://github.com/sczhou/CodeFormer' target='_blank'><b>CodeFormer: Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)</b></a>. <br>
|
| 1170 |
+
<a href='https://github.com/yangxy/GPEN' target='_blank'><b>GPEN: GAN Prior Embedded Network for Blind Face Restoration in the Wild</b></a>. <br>
|
| 1171 |
+
<br>
|
| 1172 |
+
Practically, the aforementioned algorithm is used to restore your **old photos** or improve **AI-generated faces**.<br>
|
| 1173 |
+
To use it, simply just upload the concerned image.<br>
|
| 1174 |
+
"""
|
| 1175 |
+
# Custom CSS to set the height of the gr.Dropdown menu
|
| 1176 |
+
css = """
|
| 1177 |
+
ul.options {
|
| 1178 |
+
max-height: 500px !important; /* Set the maximum height of the dropdown menu */
|
| 1179 |
+
overflow-y: auto !important; /* Enable vertical scrolling if the content exceeds the height */
|
| 1180 |
+
}
|
| 1181 |
+
div.progress-level div.progress-level-inner {
|
| 1182 |
+
text-align: left !important;
|
| 1183 |
+
width: 55.5% !important;
|
| 1184 |
+
}
|
| 1185 |
+
"""
|
| 1186 |
+
|
| 1187 |
+
upscale = Upscale()
|
| 1188 |
+
|
| 1189 |
+
rows = []
|
| 1190 |
+
tmptype = None
|
| 1191 |
+
upscale_model_tables = []
|
| 1192 |
+
for key, _ in typed_upscale_models.items():
|
| 1193 |
+
upscale_type, upscale_model = key.split(", ", 1)
|
| 1194 |
+
if tmptype and tmptype != upscale_type:#RRDB ESRGAN
|
| 1195 |
+
speed = "Fast" if tmptype == "SRVGG" else ("Slow" if any(value == tmptype for value in ("DAT", "HAT", "DRCT", "ATD", "SRFormer")) else "Normal")
|
| 1196 |
+
upscale_model_header = f"| Upscale Model | Info, Type: {tmptype}, Model execution speed: {speed} | Download URL |\n|------------|------|--------------|"
|
| 1197 |
+
upscale_model_tables.append(upscale_model_header + "\n" + "\n".join(rows))
|
| 1198 |
+
rows.clear()
|
| 1199 |
+
tmptype = upscale_type
|
| 1200 |
+
value = upscale_models[upscale_model]
|
| 1201 |
+
row = f"| [{upscale_model}]({value[1]}) | " + value[2].replace("\n", "<br>") + " | [download]({value[0]}) |"
|
| 1202 |
+
rows.append(row)
|
| 1203 |
+
speed = "Fast" if tmptype == "SRVGG" else ("Slow" if any(value == tmptype for value in ("DAT", "HAT", "DRCT", "ATD", "SRFormer")) else "Normal")
|
| 1204 |
+
upscale_model_header = f"| Upscale Model Name | Info, Type: {tmptype}, Model execution speed: {speed} | Download URL |\n|------------|------|--------------|"
|
| 1205 |
+
upscale_model_tables.append(upscale_model_header + "\n" + "\n".join(rows))
|
| 1206 |
+
|
| 1207 |
+
with gr.Blocks(title = title, css = css) as demo:
|
| 1208 |
+
gr.Markdown(value=f"<h1 style=\"text-align:center;\">{title}</h1><br>{description}")
|
| 1209 |
+
with gr.Row():
|
| 1210 |
+
with gr.Column(variant="panel"):
|
| 1211 |
+
submit = gr.Button(value="Submit", variant="primary", size="lg")
|
| 1212 |
+
# Create an Image component for uploading images
|
| 1213 |
+
input_image = gr.Image(label="Upload an Image or clicking paste from clipboard button", type="filepath", format="png", height=150)
|
| 1214 |
+
with gr.Row():
|
| 1215 |
+
upload_button = gr.UploadButton("Upload multiple images", file_types=["image"], file_count="multiple", size="sm")
|
| 1216 |
+
remove_button = gr.Button("Remove Selected Image", size="sm")
|
| 1217 |
+
input_gallery = gr.Gallery(columns=5, rows=5, show_share_button=False, interactive=True, height="500px", label="Gallery that displaying a grid of images" + (f"(The online environment image limit is {input_images_limit})" if input_images_limit > 0 else ""))
|
| 1218 |
+
face_model = gr.Dropdown([None]+list(face_models.keys()), type="value", value='GFPGANv1.4.pth', label='Face Restoration version', info="Face Restoration and RealESR can be freely combined in different ways, or one can be set to \"None\" to use only the other model. Face Restoration is primarily used for face restoration in real-life images, while RealESR serves as a background restoration model.")
|
| 1219 |
+
upscale_model = gr.Dropdown([None]+list(typed_upscale_models.keys()), type="value", value='SRVGG, realesr-general-x4v3.pth', label='UpScale version')
|
| 1220 |
+
upscale_scale = gr.Number(label="Rescaling factor", value=4)
|
| 1221 |
+
face_detection = gr.Dropdown(["retinaface_resnet50", "YOLOv5l", "YOLOv5n"], type="value", value="retinaface_resnet50", label="Face Detection type")
|
| 1222 |
+
face_detection_threshold = gr.Number(label="Face eye dist threshold", value=10, info="A threshold to filter out faces with too small an eye distance (e.g., side faces).")
|
| 1223 |
+
face_detection_only_center = gr.Checkbox(value=False, label="Face detection only center", info="If set to True, only the face closest to the center of the image will be kept.")
|
| 1224 |
+
with_model_name = gr.Checkbox(label="Output image files name with model name", value=True)
|
| 1225 |
+
# Add a checkbox to always save the output as a PNG file for the best quality.
|
| 1226 |
+
save_as_png = gr.Checkbox(label="Always save output as PNG", value=True, info="If enabled, all output images will be saved in PNG format to ensure the best quality. If disabled, the format will be determined automatically (PNG for images with transparency, otherwise JPG).")
|
| 1227 |
+
|
| 1228 |
+
# Define the event listener to add the uploaded image to the gallery
|
| 1229 |
+
input_image.change(append_gallery, inputs=[input_gallery, input_image], outputs=[input_gallery, input_image])
|
| 1230 |
+
# When the upload button is clicked, add the new images to the gallery
|
| 1231 |
+
upload_button.upload(extend_gallery, inputs=[input_gallery, upload_button], outputs=input_gallery)
|
| 1232 |
+
# Event to update the selected image when an image is clicked in the gallery
|
| 1233 |
+
selected_image = gr.Textbox(label="Selected Image", visible=False)
|
| 1234 |
+
input_gallery.select(get_selection_from_gallery, inputs=None, outputs=selected_image)
|
| 1235 |
+
# Trigger update when gallery changes
|
| 1236 |
+
input_gallery.change(limit_gallery, input_gallery, input_gallery)
|
| 1237 |
+
# Event to remove a selected image from the gallery
|
| 1238 |
+
remove_button.click(remove_image_from_gallery, inputs=[input_gallery, selected_image], outputs=input_gallery)
|
| 1239 |
+
|
| 1240 |
+
with gr.Row():
|
| 1241 |
+
clear = gr.ClearButton(
|
| 1242 |
+
components=[
|
| 1243 |
+
input_gallery,
|
| 1244 |
+
face_model,
|
| 1245 |
+
upscale_model,
|
| 1246 |
+
upscale_scale,
|
| 1247 |
+
face_detection,
|
| 1248 |
+
face_detection_threshold,
|
| 1249 |
+
face_detection_only_center,
|
| 1250 |
+
with_model_name,
|
| 1251 |
+
save_as_png,
|
| 1252 |
+
], variant="secondary", size="lg",)
|
| 1253 |
+
with gr.Column(variant="panel"):
|
| 1254 |
+
gallerys = gr.Gallery(type="filepath", label="Output (The whole image)", format="png")
|
| 1255 |
+
outputs = gr.File(label="Download the output ZIP file")
|
| 1256 |
+
with gr.Row(variant="panel"):
|
| 1257 |
+
# Generate output array
|
| 1258 |
+
output_arr = []
|
| 1259 |
+
for file_name in example_list:
|
| 1260 |
+
output_arr.append([file_name,])
|
| 1261 |
+
gr.Examples(output_arr, inputs=[input_image,], examples_per_page=20)
|
| 1262 |
+
with gr.Row(variant="panel"):
|
| 1263 |
+
# Convert to Markdown table
|
| 1264 |
+
header = "| Face Model Name | Info | Download URL |\n|------------|------|--------------|"
|
| 1265 |
+
rows = [
|
| 1266 |
+
f"| [{key}]({value[1]}) | " + value[2].replace("\n", "<br>") + f" | [download]({value[0]}) |"
|
| 1267 |
+
for key, value in face_models.items()
|
| 1268 |
+
]
|
| 1269 |
+
markdown_table = header + "\n" + "\n".join(rows)
|
| 1270 |
+
gr.Markdown(value=markdown_table)
|
| 1271 |
+
|
| 1272 |
+
for table in upscale_model_tables:
|
| 1273 |
+
with gr.Row(variant="panel"):
|
| 1274 |
+
gr.Markdown(value=table)
|
| 1275 |
+
|
| 1276 |
+
submit.click(
|
| 1277 |
+
upscale.inference,
|
| 1278 |
+
inputs=[
|
| 1279 |
+
input_gallery,
|
| 1280 |
+
face_model,
|
| 1281 |
+
upscale_model,
|
| 1282 |
+
upscale_scale,
|
| 1283 |
+
face_detection,
|
| 1284 |
+
face_detection_threshold,
|
| 1285 |
+
face_detection_only_center,
|
| 1286 |
+
with_model_name,
|
| 1287 |
+
save_as_png,
|
| 1288 |
+
],
|
| 1289 |
+
outputs=[gallerys, outputs],
|
| 1290 |
+
)
|
| 1291 |
+
|
| 1292 |
+
demo.queue(default_concurrency_limit=1)
|
| 1293 |
+
demo.launch(inbrowser=True)
|
| 1294 |
+
|
| 1295 |
+
|
| 1296 |
+
if __name__ == "__main__":
|
| 1297 |
+
parser = argparse.ArgumentParser()
|
| 1298 |
+
parser.add_argument("--input_images_limit", type=int, default=5)
|
| 1299 |
+
args = parser.parse_args()
|
| 1300 |
+
input_images_limit = args.input_images_limit
|
| 1301 |
+
main()
|
packages.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
| 2 |
+
libsm6
|
| 3 |
+
libxext6
|
requirements.txt
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu128
|
| 2 |
+
|
| 3 |
+
gradio
|
| 4 |
+
|
| 5 |
+
basicsr @ git+https://github.com/avan06/BasicSR
|
| 6 |
+
facexlib @ git+https://github.com/avan06/facexlib
|
| 7 |
+
gfpgan @ git+https://github.com/avan06/GFPGAN
|
| 8 |
+
|
| 9 |
+
numpy
|
| 10 |
+
opencv-python
|
| 11 |
+
|
| 12 |
+
torch
|
| 13 |
+
torchvision
|
| 14 |
+
|
| 15 |
+
scipy
|
| 16 |
+
tqdm
|
| 17 |
+
lmdb
|
| 18 |
+
pyyaml
|
| 19 |
+
yapf
|
| 20 |
+
|
| 21 |
+
image_gen_aux @ git+https://github.com/huggingface/image_gen_aux
|
| 22 |
+
gdown # supports downloading the large file from Google Drive
|
utils/dataops.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
# The file source is from the [ESRGAN](https://github.com/xinntao/ESRGAN) project
|
| 4 |
+
# forked by authors [joeyballentine](https://github.com/joeyballentine/ESRGAN) and [BlueAmulet](https://github.com/BlueAmulet/ESRGAN).
|
| 5 |
+
|
| 6 |
+
import gc
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def bgr_to_rgb(image: torch.Tensor) -> torch.Tensor:
|
| 13 |
+
# flip image channels
|
| 14 |
+
# https://github.com/pytorch/pytorch/issues/229
|
| 15 |
+
out: torch.Tensor = image.flip(-3)
|
| 16 |
+
# out: torch.Tensor = image[[2, 1, 0], :, :] #RGB to BGR #may be faster
|
| 17 |
+
return out
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def rgb_to_bgr(image: torch.Tensor) -> torch.Tensor:
|
| 21 |
+
# same operation as bgr_to_rgb(), flip image channels
|
| 22 |
+
return bgr_to_rgb(image)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def bgra_to_rgba(image: torch.Tensor) -> torch.Tensor:
|
| 26 |
+
out: torch.Tensor = image[[2, 1, 0, 3], :, :]
|
| 27 |
+
return out
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def rgba_to_bgra(image: torch.Tensor) -> torch.Tensor:
|
| 31 |
+
# same operation as bgra_to_rgba(), flip image channels
|
| 32 |
+
return bgra_to_rgba(image)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def auto_split_upscale(
|
| 36 |
+
lr_img: np.ndarray,
|
| 37 |
+
upscale_function,
|
| 38 |
+
scale: int = 4,
|
| 39 |
+
overlap: int = 32,
|
| 40 |
+
# A heuristic to proactively split tiles that are too large, avoiding a CUDA error.
|
| 41 |
+
# The default (2048*2048) is a conservative value for moderate VRAM (e.g., 8-12GB).
|
| 42 |
+
# Adjust this based on your GPU and model's memory footprint.
|
| 43 |
+
max_tile_pixels: int = 4194304, # Default: 2048 * 2048 pixels
|
| 44 |
+
# Internal parameters for recursion state. Do not set these manually.
|
| 45 |
+
known_max_depth: int = None,
|
| 46 |
+
current_depth: int = 1,
|
| 47 |
+
current_tile: int = 1, # Tracks the current tile being processed
|
| 48 |
+
total_tiles: int = 1, # Total number of tiles at this depth level
|
| 49 |
+
):
|
| 50 |
+
# --- Step 0: Handle CPU-only environment ---
|
| 51 |
+
# The entire splitting logic is designed to overcome GPU VRAM limitations.
|
| 52 |
+
# If no CUDA-enabled GPU is present, this logic is unnecessary and adds overhead.
|
| 53 |
+
# Therefore, we process the image in one go on the CPU.
|
| 54 |
+
if not torch.cuda.is_available():
|
| 55 |
+
# Note: This assumes the image fits into system RAM, which is usually the case.
|
| 56 |
+
result, _ = upscale_function(lr_img, scale)
|
| 57 |
+
# The conceptual depth is 1 since no splitting was performed.
|
| 58 |
+
return result, 1
|
| 59 |
+
|
| 60 |
+
"""
|
| 61 |
+
Automatically splits an image into tiles for upscaling to avoid CUDA out-of-memory errors.
|
| 62 |
+
It uses a combination of a pixel-count heuristic and reactive error handling to find the
|
| 63 |
+
optimal processing depth, then applies this depth to all subsequent tiles.
|
| 64 |
+
"""
|
| 65 |
+
input_h, input_w, input_c = lr_img.shape
|
| 66 |
+
|
| 67 |
+
# --- Step 1: Decide if we should ATTEMPT to upscale or MUST split ---
|
| 68 |
+
# We must split if:
|
| 69 |
+
# A) The tile is too large based on our heuristic, and we don't have a known working depth yet.
|
| 70 |
+
# B) We have a known working depth from a sibling tile, but we haven't recursed deep enough to reach it yet.
|
| 71 |
+
must_split = (known_max_depth is None and (input_h * input_w) > max_tile_pixels) or \
|
| 72 |
+
(known_max_depth is not None and current_depth < known_max_depth)
|
| 73 |
+
|
| 74 |
+
if not must_split:
|
| 75 |
+
# If we are not forced to split, let's try to upscale the current tile.
|
| 76 |
+
try:
|
| 77 |
+
print(f"auto_split_upscale depth: {current_depth}", end=" ", flush=True)
|
| 78 |
+
result, _ = upscale_function(lr_img, scale)
|
| 79 |
+
# SUCCESS! The upscale worked at this depth.
|
| 80 |
+
print(f"progress: {current_tile}/{total_tiles}")
|
| 81 |
+
# Return the result and the current depth, which is now the "known_max_depth".
|
| 82 |
+
return result, current_depth
|
| 83 |
+
except RuntimeError as e:
|
| 84 |
+
# Check to see if its actually the CUDA out of memory error
|
| 85 |
+
if "CUDA" in str(e):
|
| 86 |
+
# OOM ERROR. Our heuristic was too optimistic. This depth is not viable.
|
| 87 |
+
print("RuntimeError: CUDA out of memory...")
|
| 88 |
+
# Clean up VRAM and proceed to the splitting logic below.
|
| 89 |
+
torch.cuda.empty_cache()
|
| 90 |
+
gc.collect()
|
| 91 |
+
else:
|
| 92 |
+
# A different runtime error occurred, so we should not suppress it.
|
| 93 |
+
raise RuntimeError(e)
|
| 94 |
+
# If an OOM error occurred, flow continues to the splitting section.
|
| 95 |
+
|
| 96 |
+
# --- Step 2: If we reached here, we MUST split the image ---
|
| 97 |
+
|
| 98 |
+
# Safety break to prevent infinite recursion if something goes wrong.
|
| 99 |
+
if current_depth > 10:
|
| 100 |
+
raise RuntimeError("Maximum recursion depth exceeded. Check max_tile_pixels or model requirements.")
|
| 101 |
+
|
| 102 |
+
# Prepare parameters for the next level of recursion.
|
| 103 |
+
next_depth = current_depth + 1
|
| 104 |
+
new_total_tiles = total_tiles * 4
|
| 105 |
+
base_tile_for_next_level = (current_tile - 1) * 4
|
| 106 |
+
|
| 107 |
+
# Announce the split only when it's happening.
|
| 108 |
+
print(f"Splitting tile at depth {current_depth} into 4 tiles for depth {next_depth}.")
|
| 109 |
+
|
| 110 |
+
# Split the image into 4 quadrants with overlap.
|
| 111 |
+
top_left = lr_img[: input_h // 2 + overlap, : input_w // 2 + overlap, :]
|
| 112 |
+
top_right = lr_img[: input_h // 2 + overlap, input_w // 2 - overlap :, :]
|
| 113 |
+
bottom_left = lr_img[input_h // 2 - overlap :, : input_w // 2 + overlap, :]
|
| 114 |
+
bottom_right = lr_img[input_h // 2 - overlap :, input_w // 2 - overlap :, :]
|
| 115 |
+
|
| 116 |
+
# Recursively process each quadrant.
|
| 117 |
+
# Process the first quadrant to discover the safe depth.
|
| 118 |
+
# The first quadrant (top_left) will "discover" the correct processing depth.
|
| 119 |
+
# Pass the current `known_max_depth` down.
|
| 120 |
+
top_left_rlt, discovered_depth = auto_split_upscale(
|
| 121 |
+
top_left, upscale_function, scale=scale, overlap=overlap,
|
| 122 |
+
max_tile_pixels=max_tile_pixels,
|
| 123 |
+
known_max_depth=known_max_depth,
|
| 124 |
+
current_depth=next_depth,
|
| 125 |
+
current_tile=base_tile_for_next_level + 1,
|
| 126 |
+
total_tiles=new_total_tiles,
|
| 127 |
+
)
|
| 128 |
+
# Once the depth is discovered, pass it to the other quadrants to avoid redundant checks.
|
| 129 |
+
top_right_rlt, _ = auto_split_upscale(
|
| 130 |
+
top_right, upscale_function, scale=scale, overlap=overlap,
|
| 131 |
+
max_tile_pixels=max_tile_pixels,
|
| 132 |
+
known_max_depth=discovered_depth,
|
| 133 |
+
current_depth=next_depth,
|
| 134 |
+
current_tile=base_tile_for_next_level + 2,
|
| 135 |
+
total_tiles=new_total_tiles,
|
| 136 |
+
)
|
| 137 |
+
bottom_left_rlt, _ = auto_split_upscale(
|
| 138 |
+
bottom_left, upscale_function, scale=scale, overlap=overlap,
|
| 139 |
+
max_tile_pixels=max_tile_pixels,
|
| 140 |
+
known_max_depth=discovered_depth,
|
| 141 |
+
current_depth=next_depth,
|
| 142 |
+
current_tile=base_tile_for_next_level + 3,
|
| 143 |
+
total_tiles=new_total_tiles,
|
| 144 |
+
)
|
| 145 |
+
bottom_right_rlt, _ = auto_split_upscale(
|
| 146 |
+
bottom_right, upscale_function, scale=scale, overlap=overlap,
|
| 147 |
+
max_tile_pixels=max_tile_pixels,
|
| 148 |
+
known_max_depth=discovered_depth,
|
| 149 |
+
current_depth=next_depth,
|
| 150 |
+
current_tile=base_tile_for_next_level + 4,
|
| 151 |
+
total_tiles=new_total_tiles,
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
# --- Step 3: Stitch the results back together ---
|
| 155 |
+
# Reassemble the upscaled quadrants into a single image.
|
| 156 |
+
out_h = input_h * scale
|
| 157 |
+
out_w = input_w * scale
|
| 158 |
+
|
| 159 |
+
# Create an empty output image
|
| 160 |
+
output_img = np.zeros((out_h, out_w, input_c), np.uint8)
|
| 161 |
+
|
| 162 |
+
# Fill the output image, removing the overlap regions to prevent artifacts
|
| 163 |
+
output_img[: out_h // 2, : out_w // 2, :] = top_left_rlt[: out_h // 2, : out_w // 2, :]
|
| 164 |
+
output_img[: out_h // 2, -out_w // 2 :, :] = top_right_rlt[: out_h // 2, -out_w // 2 :, :]
|
| 165 |
+
output_img[-out_h // 2 :, : out_w // 2, :] = bottom_left_rlt[-out_h // 2 :, : out_w // 2, :]
|
| 166 |
+
output_img[-out_h // 2 :, -out_w // 2 :, :] = bottom_right_rlt[-out_h // 2 :, -out_w // 2 :, :]
|
| 167 |
+
|
| 168 |
+
return output_img, discovered_depth
|
webui.bat
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
@echo off
|
| 2 |
+
|
| 3 |
+
:: The original source of the webui.bat file is stable-diffusion-webui
|
| 4 |
+
:: Modified and enhanced by Gemini with features for venv management and requirements handling.
|
| 5 |
+
|
| 6 |
+
:: --------- Configuration ---------
|
| 7 |
+
set COMMANDLINE_ARGS=--input_images_limit -1
|
| 8 |
+
:: Define the name of the Launch application
|
| 9 |
+
set APPLICATION_NAME=app.py
|
| 10 |
+
:: Define the name of the virtual environment directory
|
| 11 |
+
set VENV_NAME=venv
|
| 12 |
+
:: Set to 1 to always attempt to update packages from requirements.txt on every launch
|
| 13 |
+
set ALWAYS_UPDATE_REQS=0
|
| 14 |
+
:: ---------------------------------
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
:: Set PYTHON executable if not already defined
|
| 18 |
+
if not defined PYTHON (set PYTHON=python)
|
| 19 |
+
:: Set VENV_DIR using VENV_NAME if not already defined
|
| 20 |
+
if not defined VENV_DIR (set "VENV_DIR=%~dp0%VENV_NAME%")
|
| 21 |
+
|
| 22 |
+
mkdir tmp 2>NUL
|
| 23 |
+
|
| 24 |
+
:: Check if Python is callable
|
| 25 |
+
%PYTHON% -c "" >tmp/stdout.txt 2>tmp/stderr.txt
|
| 26 |
+
if %ERRORLEVEL% == 0 goto :check_pip
|
| 27 |
+
echo Couldn't launch python
|
| 28 |
+
goto :show_stdout_stderr
|
| 29 |
+
|
| 30 |
+
:check_pip
|
| 31 |
+
:: Check if pip is available
|
| 32 |
+
%PYTHON% -mpip --help >tmp/stdout.txt 2>tmp/stderr.txt
|
| 33 |
+
if %ERRORLEVEL% == 0 goto :start_venv
|
| 34 |
+
:: If pip is not available and PIP_INSTALLER_LOCATION is set, try to install pip
|
| 35 |
+
if "%PIP_INSTALLER_LOCATION%" == "" goto :show_stdout_stderr
|
| 36 |
+
%PYTHON% "%PIP_INSTALLER_LOCATION%" >tmp/stdout.txt 2>tmp/stderr.txt
|
| 37 |
+
if %ERRORLEVEL% == 0 goto :start_venv
|
| 38 |
+
echo Couldn't install pip
|
| 39 |
+
goto :show_stdout_stderr
|
| 40 |
+
|
| 41 |
+
:start_venv
|
| 42 |
+
:: Skip venv creation/activation if VENV_DIR is explicitly set to "-"
|
| 43 |
+
if ["%VENV_DIR%"] == ["-"] goto :skip_venv_entirely
|
| 44 |
+
:: Skip venv creation/activation if SKIP_VENV is set to "1"
|
| 45 |
+
if ["%SKIP_VENV%"] == ["1"] goto :skip_venv_entirely
|
| 46 |
+
|
| 47 |
+
:: Check if the venv already exists by looking for Python.exe in its Scripts directory
|
| 48 |
+
dir "%VENV_DIR%\Scripts\Python.exe" >tmp/stdout.txt 2>tmp/stderr.txt
|
| 49 |
+
if %ERRORLEVEL% == 0 goto :activate_venv_and_maybe_update
|
| 50 |
+
|
| 51 |
+
:: Venv does not exist, create it
|
| 52 |
+
echo Virtual environment not found in "%VENV_DIR%". Creating a new one.
|
| 53 |
+
for /f "delims=" %%i in ('CALL %PYTHON% -c "import sys; print(sys.executable)"') do set PYTHON_FULLNAME="%%i"
|
| 54 |
+
echo Creating venv in directory %VENV_DIR% using python %PYTHON_FULLNAME%
|
| 55 |
+
%PYTHON_FULLNAME% -m venv "%VENV_DIR%" >tmp/stdout.txt 2>tmp/stderr.txt
|
| 56 |
+
if %ERRORLEVEL% NEQ 0 (
|
| 57 |
+
echo Unable to create venv in directory "%VENV_DIR%"
|
| 58 |
+
goto :show_stdout_stderr
|
| 59 |
+
)
|
| 60 |
+
echo Venv created.
|
| 61 |
+
|
| 62 |
+
:: Install requirements for the first time if venv was just created
|
| 63 |
+
:: This section handles the initial installation of packages from requirements.txt
|
| 64 |
+
:: immediately after a new virtual environment is created.
|
| 65 |
+
echo Checking for requirements.txt for initial setup in %~dp0
|
| 66 |
+
if exist "%~dp0requirements.txt" (
|
| 67 |
+
echo Found requirements.txt, attempting to install for initial setup...
|
| 68 |
+
call "%VENV_DIR%\Scripts\activate.bat"
|
| 69 |
+
echo Installing packages from requirements.txt ^(initial setup^)...
|
| 70 |
+
"%VENV_DIR%\Scripts\python.exe" -m pip install -r "%~dp0requirements.txt"
|
| 71 |
+
if %ERRORLEVEL% NEQ 0 (
|
| 72 |
+
echo Failed to install requirements during initial setup. Please check the output above.
|
| 73 |
+
pause
|
| 74 |
+
goto :show_stdout_stderr_custom_pip_initial
|
| 75 |
+
)
|
| 76 |
+
echo Initial requirements installed successfully.
|
| 77 |
+
call "%VENV_DIR%\Scripts\deactivate.bat"
|
| 78 |
+
) else (
|
| 79 |
+
echo No requirements.txt found for initial setup, skipping package installation.
|
| 80 |
+
)
|
| 81 |
+
goto :activate_venv_and_maybe_update
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
:activate_venv_and_maybe_update
|
| 85 |
+
:: This label is reached if the venv exists or was just created.
|
| 86 |
+
:: Set PYTHON to point to the venv's Python interpreter.
|
| 87 |
+
set PYTHON="%VENV_DIR%\Scripts\Python.exe"
|
| 88 |
+
echo Activating venv: %PYTHON%
|
| 89 |
+
|
| 90 |
+
:: Always update requirements if ALWAYS_UPDATE_REQS is 1
|
| 91 |
+
:: This section allows for updating packages from requirements.txt on every launch
|
| 92 |
+
:: if the ALWAYS_UPDATE_REQS variable is set to 1.
|
| 93 |
+
if defined ALWAYS_UPDATE_REQS (
|
| 94 |
+
if "%ALWAYS_UPDATE_REQS%"=="1" (
|
| 95 |
+
echo ALWAYS_UPDATE_REQS is enabled.
|
| 96 |
+
if exist "%~dp0requirements.txt" (
|
| 97 |
+
echo Attempting to update packages from requirements.txt...
|
| 98 |
+
REM No need to call activate.bat here again, PYTHON is already set to the venv's python
|
| 99 |
+
%PYTHON% -m pip install -r "%~dp0requirements.txt"
|
| 100 |
+
if %ERRORLEVEL% NEQ 0 (
|
| 101 |
+
echo Failed to update requirements. Please check the output above.
|
| 102 |
+
pause
|
| 103 |
+
goto :endofscript
|
| 104 |
+
)
|
| 105 |
+
echo Requirements updated successfully.
|
| 106 |
+
) else (
|
| 107 |
+
echo ALWAYS_UPDATE_REQS is enabled, but no requirements.txt found. Skipping update.
|
| 108 |
+
)
|
| 109 |
+
) else (
|
| 110 |
+
echo ALWAYS_UPDATE_REQS is not enabled or not set to 1. Skipping routine update.
|
| 111 |
+
)
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
goto :launch
|
| 115 |
+
|
| 116 |
+
:skip_venv_entirely
|
| 117 |
+
:: This label is reached if venv usage is explicitly skipped.
|
| 118 |
+
echo Skipping venv.
|
| 119 |
+
goto :launch
|
| 120 |
+
|
| 121 |
+
:launch
|
| 122 |
+
:: Launch the main application
|
| 123 |
+
echo Launching Web UI with arguments: %COMMANDLINE_ARGS% %*
|
| 124 |
+
%PYTHON% %APPLICATION_NAME% %COMMANDLINE_ARGS% %*
|
| 125 |
+
echo Launch finished.
|
| 126 |
+
pause
|
| 127 |
+
exit /b
|
| 128 |
+
|
| 129 |
+
:show_stdout_stderr_custom_pip_initial
|
| 130 |
+
:: Custom error handler for failures during the initial pip install process.
|
| 131 |
+
echo.
|
| 132 |
+
echo exit code ^(pip initial install^): %errorlevel%
|
| 133 |
+
echo Errors during initial pip install. See output above.
|
| 134 |
+
echo.
|
| 135 |
+
echo Launch unsuccessful. Exiting.
|
| 136 |
+
pause
|
| 137 |
+
exit /b
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
:show_stdout_stderr
|
| 141 |
+
:: General error handler: displays stdout and stderr from the tmp directory.
|
| 142 |
+
echo.
|
| 143 |
+
echo exit code: %errorlevel%
|
| 144 |
+
|
| 145 |
+
for /f %%i in ("tmp\stdout.txt") do set size=%%~zi
|
| 146 |
+
if %size% equ 0 goto :show_stderr
|
| 147 |
+
echo.
|
| 148 |
+
echo stdout:
|
| 149 |
+
type tmp\stdout.txt
|
| 150 |
+
|
| 151 |
+
:show_stderr
|
| 152 |
+
for /f %%i in ("tmp\stderr.txt") do set size=%%~zi
|
| 153 |
+
if %size% equ 0 goto :endofscript
|
| 154 |
+
echo.
|
| 155 |
+
echo stderr:
|
| 156 |
+
type tmp\stderr.txt
|
| 157 |
+
|
| 158 |
+
:endofscript
|
| 159 |
+
echo.
|
| 160 |
+
echo Launch unsuccessful. Exiting.
|
| 161 |
+
pause
|
| 162 |
+
exit /b
|